[X\erliR

A Macro Assembler For The Apple Il

southwesternN data svystems

[X\erlip

by Glen Bredon

INSTRUCTION
MANUAL

Copyright © 1982 by Southwestern
Data Systems. All rights reserved.
This document, or the sofrware
supplied with if, may not be
reproduced in any form or by any
means in whole or in part without
prior written consent of the copy-
right owners. 2M0383JCL

PRODUCED BY:

D ==

southwesterRn doata systems™

10761 Woodside Avenue e Suite E « Santee, California 92071
Telephone: 619/562-3670

SOUTHWESTERN DATA SYSTEMS CUSTOMER LICENSING AGREEMENT

This software product 1s provided to you subject to the terms
and conditions of this agreement. If you feel you cannot
accept these terms and conditions, you must return this pro-
duct intact within 10 days of original purchase.

1. LICENSE. Southwestern Data Systems hereby grants you upon

recelpt of this product, a nonexclusive license to use the
enclosed product subject to the terms and restrictions set
forth in this agreement.

2. COPYRIGHT. This software product and its documentation,
is copyrighted by Southwestern Data Systems and the program
author.

3. RESTRICTIONS ON USE AND TRANSFER. The original and any
back-up copies of this product are intended for your personal
use in conjunction with a single computer. You may not copy
or otherwise reproduce this product in whole or part except
as expressly permitted in this agreement.

DISCLAIMER

SOUTHWESTERN DATA SYSTEMS AND THE PROGRAM AUTHOR SHALL HAVE
NO LIABILITY OR RESPONSIBILITY TO PURCHASER OR ANY OTHER
PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR
DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR IRDIRECTLY
BY THIS SOFTWARE, INCLUDING, BUT NOT LIMITED TO ANY INTERRUP-
TION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR
CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR OPERATION OF
THIS SOFIWARE.

MERLIN Users Manual

TABLE OF CONTENTS

TABLE OF CONTENTS

INTRODUCTION. cvccovsesasossnconcoscccsnasscsnsnscanacs
1.1. Assembly Language Whys and Wherefores...coessess
1.2, Backgrounds and FeatureS..escsseasessscssncsssss
1.3, Suggested Readingsesessesoscoscsosssssncsnssscns

SYSTEM REQUIREMENTS...csccescccnaconssasassasnnanccss
2.1. Hardware Compatibility Listessececoccccocsnsnoons

BEGINNERS GUIDE TO USING MERLIN...cseccsnceccsscnsase
IntroductiONssesessssccovssooossssssssnosssssacss

3.1.

3.2,
3.3.
3.4,
3.5.
3.6,

INPUteccesneosenoosescssssososscsacnssnsnsssnsns
System and Entry CommandS...ocsosssssssscnscasss
AssemblY.seoeccsocnsssssssssscosscescssoocasansna
Saving and Running ProgramSecseccsssscsssscocsas
Making Back—-up Copies of MERLIN...sveeconsconncs

EXECUTIVE MODE.ccvcoosanccnossnccnsnvonasncsucncoonnsa

s

@

@

=

®

®

WO O e ur O

1
2
3
A
D
6
7
8
9
1

ElE R R R R S S e

s @

0.

tCATALOG. s sosocnsasosasoanscnssnssssanncssasesne
tLO0AD scesenmnencnssasosnscnonsacsssonssesssnsoes
tGAVE . oenosasssncsasunassosoncsasesscosssesscssa
SAPPEND . ceocvesasnsososoesanssoooonosossesascncse
tDRIVE . seeosvnvscensonsssssosanccssnsnsssocosssces
tEDITOR.eceonscvoossocasaanonsssssonnsescesssss
:SAVE OBJECT CODEcoscscosncscnesssnonssenasnsasns
tQUITeeeseosencocenosansecanonoosssocscsnassosasn

.
tREAD..osoonassscsoossoscossssoscososcsssassasse

WiWRITE s eeouasosnssosnnssssaosncsonsossoasnnans

THE EDITOR.cocsvenccscncccacncssuncsnanccsnonasonsssans
Command ModE.sceoeeosoassnssssnsssesssosnssssnnses

5.1,

5¢lel, HIMEMaeuseoveososascnnasassnssnsascsasosoesossss

e« NEWoeooseosonsaaseosnonossanonsonansaosassssnsss
e PRI(O~7)uceecnsnosososssocssassssoscssesoe
e USERcicosnsossocacssonsncscsnssasssnscssss
o TABS.cscssosssssscocnosnssssnsanssnssssen
o LENgtheeeeesoenesnsssnsnssancasasnsssnsacns
e Where.sesseseasonesscsscsscnscanssssasssacos

o MONitOTosonoosossovsossonconessonsossasssces

B b e

~

10
13
16
18
19

MERLIN Users Manual TABLE OF CONTENTS

1.9, TRUNCON, cevososcnvosnasnssscccanssnsonssea 30

1,100 TRUNCOFf . ooreoonconsvoannsssocacnonansne 30

1,11, Quifeonsononsccnssnsssooncssssososasossas 30
5.1012, ASMicesvevsssonsosssscassoncnconenossons 30
5.1013. Control=Daissveosscocsasosooscsonsoacanne 31
5.1clb, DeletCoesvesocsosusscosssnossoncssnscana 31
5.1.15, Replac@.ceecvncsscsscccoscssnsscoansanss 31
5,116, LiSteevesssovosnconsoossssvnonccccennoans 32
5.1.17. o (period)essescecocccncssnccnvovcononsne 32
5.1.18. / (line number).essovscscosccnasccncaose 32
55,1219, Printesececsaossscsssocssscososssccnssane 32
5.1,20, PRinTeR (command)esevcecasccocncncensoses I3
5¢1421, Findeoeesoesssosssssssssssassssssosnsanne 33
501022, Changeaessseceessscosssssssanascsnsencoss b
541423, COPYeuovossovecnonsovannssnonsscannnssos Ik
501024, MOVE.uuwsuoooosassosnsnossenosannoannnose Jb
5,125, Edifeosossocsncnonsssscssssasncsacscescess 33
5.1.26. Hex~Dec ConversioONesscesccsosnsossoassons 35
5410270 TEXTuuveencosocsnesssvancsoonsocoscssnoasas I3
51,28, FIX.uoseoooosscsonasnsossesonsosnssnscos 30
521429, SYM,ueuvnnsenosvssassasssssssscecscanasce 30
5,1.30. VIDEO.voonsonssssansnnssccscsscsnsssssse 30
5.1.31s FW (Find Word)eseesoossonsosoncosassnsan 37
5.1.32, CW (Change wOrd)esssecsccescanssasncencs 37
5.1.33. EW (Edit Word)eeessasocescassoscosasaasas 38
501034, VAL.vosscsasasoosonasovnososossossensncoe 38
5.2, Add/Insert Mod@seseevesancsasosscsonssenssnsssns I8

2.1 Add.seesscencnncnssnsancssossescsasnsossss 39

2.2, INSEYlecesnsssssccsssssnssocsssansssscsas 39
e203¢ CONLYOl=licssoocorasccsossnsonsonconascoons 39
dit MOde.seocossovsosscsnasnsscononsnssssssasee 40
dit Mode CommandS...ssscssscesssssssscosascscee 40
4,1, Control=I (insert)eseessccscesassssoscocs 40
4,2, Control=D (delete)eeesesnsoscsncnosanonse 40
4.3, Control=F (find)eeeecoosvconcoassconssses 40
4.4, Control—0 (insert special)eseceeeossnsoses 41
4.5, Control=P (do *%%) ., . ..ueeasecoonconnonas Gl
b6, Control=C (do border)eeecsasensssconssocs 41
4,7. Control~C or Control-X (cancel).sesseeess 42
4.8. Control-B (go to line begin)eesveeceeoseess 42
4.9, Control-N (go to line end)eeececococncoes 42
4,10. Control~R (restore 1ine)e.esesesoosesane 42
4.11. Control-Q (delete line right)ecescsceses 42

MERLIN Users Manual TABLE OF CONTENTS

5.4.12. Return (RETURN Ke¥)seoeoosesnsoosasasacs 42

6. THE ASSEMBLER...coccsscsccenancacscassooscssencsonsasna 43
6.1, Number FOrmat,.seeusecsscossosocnsssoancsceoocsss 45
6.2, Source Code FOTrMAtaseossssocoosovonsosscasenssnaass 4O

6.3, EXPTressSionSeessossascssssescasansssnsansossoncss 47

6.4, Immediate Datf.eccscssscosovsscsssscssacascsasess 48

6.5, Addressing Modes (6502 OpcodesS)eessvesvsancasoss 49

6.6. Sweet 16 OpcodeSeeveccsnsssnscssasssssssssssnsss S0

6.7. Pseudo Opcodes — DirectiveS..ssesssscescoscssess Dl

6.7.1e EQU (=) eeusosnsssnosssonssssscsssasnsscons Dl
60702 ORGueooccoosacnnsnsnsansenasssosssssssnsas Dl

65.7.3. OBJucesonssnsonsssssnesnasasscssasansanns D2
6070l PUTuacassenusssosansnsnsososossssssssaces D2
6.705c VARusocsosoosnscsscoosnssancssncsnosonona D3
647260 SAV..ceoncsoasnsonsanssssnnssssssssnsosns D3
6,77 DSKuvevooosscoasocosnnsasnssonssnnsansnne Oh
6.7.8. ENDivusosssssassssasosnscenscnsesunsassasse Db
6.8, FOrmattingeseoessossencessosossnososcononsosanss DD
6.8.1. LST ON/OFF.sooesssosncnsascscsscosnssnase DI
6.8.2. EXP ON/OFF.ceccoccossonsosnonnssosassenne DO
6.8.3c PAUsovwososensscoosasasesososassasssnassnss D0
6.8.4y PAGsosecusossnssossasssoscncsssoannossees DO
6.8.5, ASTevonessonsasssascscascassncasescsssoss 2O
6.8.6. SKPiocssssssosasnssosssossosocassosssassa DO
6e8.7¢ TRovoososcosvosnsaosnasosnasssscsssascnane D/
6.9, SEYiTgSacsecsssssossssoccososansosasscscoasssoas 3/
6.9.1. ASChcescovosossncnssvasasasssscncasaanness D/
6.9¢20 DClouuocovosonsasassnssacncanossesosansss D/
6.9.3, INV.esosunsonsssnsonosonsonancsosonsescsa DO
6.9.he FLSuiuvcosossosoaossnssassssassnanssascns DO
6.9.5, REV.usuesasnassosscnnonssnsscssnsassansne DO

6.10., Data and AllocAtioN..esscsonsscsosscssscnasncss IO
6.10.1, DAcucescososcnonsancnsossasanseasassosas I8
£.10.2. DDBuvevocsoonssccossnccssssanssansasans D9
6.10.3, DFBuveoescoossaossocsaoossensoesonnsoscns DI
6.10.4. HEXuuevoooosoonosoosnasnasascasnnssnses 0O
6.10.5: DSuvsceocvcancnscsosscosscscsasssensasa 0O
6.10.6, KBDuvoosooonsossossocavnacsssnsossseasnsss 00
6,10.70 LUPuuuvocossncosnsossnonsssosnessssosane O
6,10.8, CHK.vuoeonovoncoonsnovnsnsanconscsscsnaas 02
6.10.9, FRR.ueocvsonncssovssossansscsvnsscasssss D2
6£.10,10. USRuvusevonsnocssossvsasosssacoconsanse 03

MERLIN Users Manual TABLE OF CONTENTS

6,11, ConditionalS.secevoccancscsscssoscnsscsncasnanns 0O
H.11.1. DOvvvasocssooosnssacsnonsssscssoncssnonse OO
61102, ELSEuuessonvcsooessasesasocsassccacsoaossaoca OF
611,30 FIN.ueossoononoonooscsnsncosssnasncssess D7

6,12, MBCTOSssesornascccvsssnssasssssocsonsancasssossan OF
6.12,1. MAC.seocsvonansonansnscosnsscosnnosnsos OF
6.12.2. PMC (D> Jeeceonsnsscssosssssnvsesonas 08

6.13. VariableSesueeescecoossesssoscossosssscoasnscnsncs DO

7. MACROS.ccccvnscconacoasssansonanscnsnaccssnanncnsnnsas DOF
7o.l. Defining @ MaCrO.enseeesoncoceanessnsanessscnnans 09
7.2, Nested MaCTOSesscsssussonosconvsssccsasssossssssas 09
7.3. Special VariableS...ceenvescoosossssasansencscns 71
7.4, Sample ProgramMecsseoacosssosssocscosncovsscesssaas /3
7.5. The Macro Libraryseeeccsveessansccvosossasssscas 74

CHNICAL INFORMATION..cwccvcsesscscscesnsessasnsnnna /9
General InformatioNesesesscoccanssccssassassssns /5
MERLIN Memory Map (Ram Card Version)esessecocnss 77
MERLIN Memory Map (48k Version).eesosscssococesss /8
Symbol Tableasecoocosssanscosoesosoncsssscsacnee 79
Using MERLIN With Shift Key ModSc.swesessocssasas 79
Using MERLIN With 80 Column BoardS..seesceseesss 80
The Configure ASM Programeccessccesscsssassssess Ol
Error MessageSeeeesessenvsecccosssnonsesnsssssess OL
8.8,1. BAD OPCODE.,uscocssoccosssssssnssscnnsance 82
2. BAD ADDRESS MODE..veoosacensnosconsasnase 82
3., BAD BRANCH.uecosnoscoooasanssoonssasosane 82
4, BAD OPERAND..ccosoecsncnsossossssasssasse 82
5. DUPLICATE SYMBOL.sscesesaosnnsccsossanesce O3
6., MEMORY FULLu:vsosooosocsascasosssancsancane O8I
»7. UNKNOWN LABEL..voescosscsosnsssascssssnsss OO
8
9
1
1
1

=

.
-

®
“

",

*
0

oo 00 0o w
.

00~ O Ut P W N e
B

»
.
e ® s

o NOT MACROceoocscsoosacsossssncasnnsencnss O3
NESTING ERRORccvsvoocsscesnsancnnsncossaa 83

“

.
OO0 oo 0 oo 0o 00w
®

O. BAD "PUT .. ecsosossnssscssenssassscsacan 83
1. BAD MSAV" i iceenreonssncsssasnsscsassnnes B8k
2, BAD INPUT . cossscascoccocanssssovaosssas 84
e8.13, BREAK.:wcovocoasssoanosenvsnoonsnnosscss O

8.8.14, BAD LABEL.voueossocessassnsncessnsoscoss B4
8.9. Special Note = Memory Full ErrorS.eeeccsccssseas 84

s ®

»

CO 00 CO 0o Qo 0o 000w
.

‘‘‘‘‘‘‘‘‘‘‘

MERLIN Users Manual

TABLE OF CONTENTS

9, SOURCEROR..coccnssscononocsnsssnonscennscnccossccncsnnas

10.

il.

9.5.

G.6.
9.7.
9.8.
5.9.
9.1

0.

SWEET

10.1.
10.2.
10.3.

SWEET

1l.1.
11.2.
11.3.

11.4,

IntroductiOnNececossoossssoossssasoscscsounsssonssse
Using SOURCEROR:::escsessvssscsosnscsacscasonnns
Commands Used in Disassemblyeceeovsvacsssossscess
Command DescriptionS.esesssscesssosossncssssoocn
9.4.1. (1iStYenesossvsassnssnssncssosensnasssss

(SWEET)ssoocnsssacnscncsasnsosnsonsacss
(NOTMALl) cseevcanssossnsssensssnsavonnns

(TEXL)eoosvsasscoscssassssasussnnanascss
(WOTA)encevsssonsosanscsanssssnssovaasas

L
S
N
e H (HeX)sooensosassvasossasasasesssascnnes
T
W
ee

ping CommandS.secooovscassasensoorssscacs

9,5.2. R (Read) sseccosvososncosncvesncsnancnnsss
9.5.3, Q (QUit)eseoacncesnoooasosoccnnssssacsoss
Final Processingeccscssssovosssscssssnsnncsnasncss
Dealing with the Finished Sourcessceacaceacocess
The Memory Full MesSagesscssssccsscsacsssossvoas
The LABELER progralssecececsssesscsosscssoscsnoas
Labeler CommandS.cccoossossosssssscsssassassnse
9,10,1, Q:QUITscccnsoscsscoccnonnssscssssensasse
9,10,2. LiLISTucceovosoessoosscscvoanoconnsssosnns
9,10.3, D:DELETE LABEL(S)cescosscnsscosscsonsss
9,10,4, A:ADD LABEL....ocacesosscensscsonascsss
9,10.5., F:FREE SPACE...sec0cssssccsccsscsssnsoe
9,10.6, UsUNLOCK SRCRR.OBJecoccoscsnsoosasacasss

Listing #leeessvescssassssssscosccssscsnssascnse
Listing #2.0ovessescncssonsscssassccsossaannons
Listing #3.eueeessosvsnossoncosseasrsnossssocss

DescriptioOnNecssssacssssosssonsssncccssssssnssss

Instruction DescriptionScsscescsscvsssasccacsne

Sweet 16 Opcode SUMMATYsosossocvassssassassosas
11.3.1. Register OPS.ccescessoscossssoescsovses
11.3.2. Non~register OPS..ccccosssansvsnscancss
Register InstructionS.cocscecasecscnoscosconnans

11ebdols SETueoeecovsvonsssoaccsassonsnsssnnssoas

11.4.2, LOAD c.ssnsasssnocsososancossssenscsanc

11.4.3, STORE..cenossscnsssaanssnsnsssccesnanae

11.4.4, LOAD INDIRECT.csceesssencoccssacncnsnne

16 ~ INTRODUCTION...cccsscescssceccessnssssccsns

16: A Pseudo 16 Bit MicroprocessOl.csccsssssene

87
87
87
89
89
89
90
90
90

91
92
92
92
93

94
95
95
96
96
96

96
96
97

99
104
105
105

107
107
108
109
109
110
110
110
111
111
111

MERLIN Users Manual

TABLE OF CONTENTS

11.4.5, STORE INDIRECT . uunoseonsessosaccasacsss
11.4.6., LOAD DOUBLE-BYTE INDIRECT .. soecoseacoass
11.4.7. STORE DOUBLE~BYTE INDIRECTeseovosonaoes
11.4.8. POP INDIRECT 4uscenonnnenoncensooocnnsss
11.4.9, STORE POP INDIRECT..uvsovesonoeocoansss
11.4.100 ADDuusuveennensasnossoocnsonncnnsnsans
11.4.11. SUBTRACT sesveroocosoncsonosensnnoncsss
11.4.12, POP DOUBLE~BYTE INDIRECT .02 eeueeooseses
11.4.13, COMPARE . ovuccnsvsvsosonocsnnsosonnses
11.4.14. INCREMENT eeovouconoonsocconssnnsnnnnns
11.4.15, DECREMENT s vvoveosonasocccnonnsnsoneansn
11.5. Non-Register INStructionSeeescececseoseencoscass

11.5.1. RETURN
11.5.2. BRANCH
11.5.3. BRANCH
11.5.4. BRANCH
11.5.5. BRANCH
11.5.6. BRANCH
11.5.7. BRANCH
11.5.8. BRANCH
11.5.9. BRANCH

TO

6502 MODE.vcroesconrcnonsannns

ALWAYS oo veoocneansnncsscsasnas

IF
IF
IF
IF
IF
IF
IF

NO CARRYsooeovvssncssonnnncas
CARRY SET.sveneccsonooncascss
PLUS:sasssoccacecssannsosnncns
MINUSeeoaeonensoscencaooncasnse
ZEROwsovaconossnnossoancencos
NONZERO . .veusvecscnncsnsooanns
MINUS ONE:oesssonsonsacasncss

11.5.10. BRANCH IF NOT MINUS ONE.uuvessosecsoons
11.5.11, BREAK. . eveencosncnscscccascancncnonans
11.5.12. RETURN FROM SWEET 16 SUBROUTINE.......
11.5.13, BRANCH TO SWEET 16 SUBROUTINE..20ecen.
11.6. Theory of OperatioNeseecoscesccesconncacsconoss
11.7. When 1is an RTS really @ JSR?uueercccsscconcenss
11.8. OPcode SUDIOULINES.ussceoscoscecnssoncnosoonese
11.9. Memory AllOCACtiONesscosseneconsooscsononscnssss
11,10, User ModificationSeesescanoooocsoonscssscosess

12. APPLESOFT LISTING INFORMATION.....enevcecosoaccocenss
12,1, SOURCEROR.FP.cuonnseononoosvcecannocconcasnnsns

12.1.1. Steps to list the Applesoft Disassembly

13, GLOSSARY..cuuceocoenconccssosnacncocsscassancscncncen

14,

SAMPLE PROGRAMS...vcocesconcsncoscssonssocsansonsaass
14.1, The Floating Point ROULINES.seeesesconsesocssss
14.2. The Multiply /Divide ROULINESeeeeennoooonsnsans
14o3. PRDEC. s seacesonsesssooosnsanccensenssonococacns

112
112
113
113
114
115
115
116
116
117
117
118
118
118
119
119
120
120
120
121
121
121
121
122
122
123
124
124
125
126

127
127
128

131

137
137
137
137

MERLIN Users Manual

i5.

TABLE OF CONTENTS

14,4, MSGOUT e ueonsaosvcsnonncoconsosssoncsanscsnnnosas
14,5 UPCON.,soscosasnvonsosssonencnoosooncnannsssssns
14.6, Game Paddle Printer DriveT..cescscccossesosssss

UTILITIES cocccsavonsscesanoanconnnnasossnascsoncenscan

15.1.
15.2,
15.3,

15.4.
15.5.

FOrmattelescsesssonsnsssssnssvosvososanosassesns
CHRGEN 70..cccassssonccsnssnnscssssosnsoossasas
XREF, XREF.XL and STRIP.cecvosscvcsccossonssnsan

15.3.1.
15.3.2.
15.3.3.
15.3.4.
15.3.5.
15.3.6.

Sample MERLIN Symbol Table Printout:...
Sample MERLIN XREF Printoufi..ecsccsose
XREF InstructionSe.essscosccocsssssonses
CAUTIONS for the use of XREF.uvenosooos
XREF.XL InstructionS.scssssussosssencocs
CAUTIONS for the use of XREF.XL.coovsve

STRIP s sensesssonssonsosocosssscsosnssssassassae

PRINTFILER.scoeuvonconsesvsnosnsrasssnconsanncns

15.5.1.
15.5.2.
15.5.3.
15.5.4,
15.5.5.

ApplicationS.ceeccvensnssscsssccssossssns
How To Use PRINTFILER.ccoccasassavesess
Changing PRINTFILER s OptionS.covcossens
Benchmarking PRINTFILER..cosovonsscocss
Changing PRINTFILER OptionS..ccecseseee

138
138
138

141
141
142
143
144
144
145
146
148
148
150
150
151
151
152
153
153

MERLIN Users Manual INTRODUCTION

1. INTRODUCTION

1.1, Assembly Language Whys and Wherefores

Some of you may ask "What is Assembly Language?' or "Why do I
need to use Assembly Language; BASIC suits me fine." While
we do not have the space here to do a treatise on the sub~-
ject, we will attempt to briefly answer the above questions.

Computer languages are often referred to as "high level or
"low level” languages. BASIC, COBOL, FORTRAN and PASCAL are
all high level languages. A high level language is one that
usually uses English-like words (commands) and may go through
several stages of interpretation or compilation before final-
ly being placed in memory. The time this processing takes is
the reason BASIC and other high level languages run far
slower than an equivalent Assembly Language program. In
addition, it normally consumes a great deal more available
MEMOTY .,

From the ground up, your computer understands only two
things, off and on. All of its calculations are handled as
addition or subtraction but at tremendously high speeds. The
only number system it comprehends is Base 2 (the Binary Sys-
tem) where a "1V is represented by @@@@@F@1 and a "2" is
represented by $@200810.

The 65¢2 microprocessor has five 8-bit registers and one 16~
bit register in the ALU (Arithmetic Logic Unit). All data is
ultimately handled through these registers. Even this lowest
of low~level code requires a program to function correctly,
This program is hard wired within the 65¢2 itself. The
microprocessor program functions in three cycles. 1t fetches
an instruction from RAM memory in the computer, decodes it
and executes it,

MERLIN Users Manual INTRODUCTION

These instructions exist in RAM memory as one, two or three
byte groups. A byte contains 8 binary bits of data and is

usually notated in hexadecimal (base 16) form. Some early

microcomputers allowed data entry only through 16 front panel
switches, each of which, when set on or off, would combine in
hex. This requires an additional program in the computer to
break the byte down into its respective 8 bits so that 65@2
may interpret it.

At the next level up (requiring still more programming), the
user may enter his/her data in the form of a three character
"mnemonic', a type of code whose characters form an associa-
tion with the microprocessor operation, e.g. LDA stands for
"LoaD the Accumulator'. The standard Apple II has a built—in
mini-~assembler that permits simple Assembly Language

programming.

But even this is not sufficient to create a long and compre~
hensive program. In addition to the use of a three character
mnemonic, a full fledged assembler allows the programmer to
use "labels", which represent an as yvet undefined area of

memory where a particular segment of the program will be .

stored. In addition, an assembler will have a provision for
line numbers, similar to those in a BASIC program, which in
turn permits the programmer to insert lines into the program
and perform other editing operations. This is what MERLIN is
all about.

Finally, a high level language such as BASIC is itself an
assembly program which takes a command such as PRINT and
reduces it by tokenizing to a single hex byte before storing
it in memory.

Before using this or any other assembler, the user is expect-
ed to be somewhat familiar with the 652 architecture, modes
of addressing, etc. This manual is not intended to teach
Assembly Language programming. Many good books on 6502
Assembly programming are available at your local dealer; some
are referenced later in this sectiomn.

MERLIN Users Manual INTRODUCTION

1.2. Backgrounds and Features

MERLIN is a "Ted-based" editor—assembler, This means that
while it is essentially new from the ground up, it adheres to
and follows almost all of the conventions associated with TED
IT+, in terms of the command mnemonics, pseudo—ops, etc.

The original TED ASM was written by Randy Wiggington and Gary
Shannon. It has been widely distributed "under the counter"
by user groups and individuals, under many names, and in a
variety of versions, Seemingly, each person added his own
enhancements and improvements. MERLIN is no exception. Rep-
resenting a major step forward, with the addition of macro
capability, MERLIN appears on the scene now as one of the
most advanced and sophisticated editor-assemblers for the
Apple II, yet retains all of the easy—-to-use features of TED
that make it desirable to a beginner in assembly language
programming.

Significant changes incorporated in MERLIN, in addition to
macros, include the use of the logical operators AND, OR, and
EOR, and the math operator for division, the ability to list
with or without line numbers, and substantially faster edit-
ing. Similarly, the edit module now includes many additional
commands to facilitate editing, and the "Read" command allows
any Apple text file to be read into the edit buffer, thus
permitting the use of source files from other assemblers,
such as DOS Tool Kit.

MERLIN assumes that your system has at least 48K memory and
operates under 3.3 DOS. BEWARE of "custom" DOS’s. MERLIN
does an automatic MAXFILES 2 upon entry, then reverts to the
usual value on exit.

MERLIN Users Manual INTRODUCTION

1.3. BSuggested Reading

SYSTEM MONITOR -~ Apple Computer, Inc. Peeking at Call=-
Apple, Vol I.

APPLE 11 MINI-ASSEMBLER - Apple Computer Inc. Peeking at
Call-Apple Synertek Programming Manual., Synertek 6500-20.

PROGRAMMING THE 65§2 - Rodnay Zaks, Sybex C-202.

THE APPLE MONITORS PEELED -~ WM. E, Dougherty, Apple Computer,
Inc.

A HEX ON THEE - Val J. Golding, Peeking at Call-Apple, Vol.
11,

FLOATING POINT PACKAGE - Apple Computer, Inc., The Wozpak II

FLOATING POINT LINKAGE ROUTINES - Don Williams, Peeking at
Call—~Apple Vol I

APPLE 1T REFERENCE MANUAL - Apple Computer, Inc.

ASSEMBLY LINES ~ by Roger Wagner

A continuing series of tutorial articles in SOFTALK magazine,
An excellent introduction, easy~to~follow for the beginning
assembly language programmer.

ASSEMBLY LINES: THE BOOK - by Roger Wagner

A compilation of the first 18 issues of the Assembly Lines
series, In addition, the text has been extensively edited
and a unique encyclopedia~like appendix added. This appendix
shows not only the basic details of each 65¢2 command, but
also a brief discussion of its most common uses along with
concise, illustrative listings.

CONVERTING BRAND X TO BRAND Y ~ by Randall Hyde
Apple Orchard, Volume 1, No.l, March/April 8@. Useful notes
and cross references on converting among assemblers.

MERLIN Users Manual INTRODUCTION

CONVERTING INTEGER BASIC PROGRAMS TC ASSEMBLY LANGUAGE
by Randall Hyde
Apple Orchard, as above.

HOW TO ENTER CALL - APPLE ASSEMBLY LANGUAGE LISTINGS
Call-APPLE, Volume IV, No.l, January 81.

MACHINE TOOLS
Call—-APPLE in Depth, No. 1

MERLIN Users Manual SYSTEM REQUIREMENTS

2. SYSTEM REQUIREMENTS

48K APPLE][
16K RAM CARD
8¢ COLUMN BOARD (optional)
LOWER CASE BOARD (optional)

* % ok *

2,1, Hardware Compatibility List

VIDEX VIDEOTERM

FULL-VIEW 8@ - 8@ COLUMN BOARD

M & R SUP’R'TERMINAL 80 COLUMN BOARD

ALS SMARTERM 8¢ COLUMN BOARD

VISTA VISION 8¢ -~ 8p COLUMN BOARD

OMEGA MICROWARE RAMTEX 16 - 16K RAM BOARD
ANDROMEDA 16K BOARD

MICROSOFT 16K RAM BOARD

WIZARD 80 - 80 COLUMN BOARD

¥ % ¥ W X F ¥ H X

NOTE: MERLIN has been tested with the cards/boards listed
above. The author makes no guarantees with respect to the
operation of MERLIN with any 8§ column boards not listed.

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

3. BEGINNERS GUIDE TO USING MERLIN

By T. Petersen

Notes and demonstrations for the beginning MERLIN programmer.

3.1. Introduction

The purpose of this section is not to provide instruction in
assembly language programming. It is to introduce MERLIN to
programmers new to assembly language programming in gemeral,
and MERLIN in particular,

Many of the MERLIN commands and functions are very similar in
operation. This section does not attempt to present demon-~
strations of each and every command option. The objective is
to clarify and present examples of the more common opera-
tions, sufficient to provide a basis for further independent
study on the part of the programmer,

A note of clarification:

Throughout the MERLIN manual, various uses are made of the
terms "mode" and "module".

In this section, "module" refers to a distinct computer
program component of the MERLIN system. There are four
MODULES:

1. The EXECUTIVE

2., The EDITOR

3. The ASSEMBLER

4, The SYMBOL TABLE GENERATOR

Each module is grouped under one of the two CONTROL MODES:

1) The EXECUTIVE, abbreviated EXEC and indicated by the

Fap e

2" prompt.

2) The EDITOR, indicated by the ’:’ prompt.

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

EXECUTIVE CONTROL MODE
Executive Module

EDITOR CONTROL MODE

Editor Module

Assembler Module

Symbol Table Generator Module
The term "mode" may be used to indicate either the current
control mode (as indicated by the prompt) or alternatively,
while in control mode and subsequent to the issuance of an
entry command, the system is said to be in ’“[entry command]
mode’. For example, while typing in a program after issuing
the ADD command, the system is said to be “in ADD mode’.

Terminating [entry command] mode returns the system to con~
trol mode.

3.2. Input

Programmers familiar with some assembly and higher-level
languages will recall the necessity of formatting the input,
i.e, labels, opcodes, operands and comments must be typed in
specific fields or they will not be recognized by the
assembler program.

In MERLIN, the TABS operator provides a semi-automatic
formatting feature.

When entering programs, remember that during assembly each
space in the source code causes a tab to the next tab field,
As a demonstration, let’s enter the following short routine.
Steps from the very beginning:

1. BRUN MERLIN

2., When the ‘%’ prompt appears at the bottom of the EXEC

mode menu, type 'E’. This instantly places the system in
EDITOR control mode.

10

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

4.

11.

’

Since we are entering an entirely new program, at the ":
prompt type ‘A’ and press RETURN (4 = ADD). A ‘1’
appears one line down and to the right, and the cursor is
automatically tabbed one space to the right of the line
number, The ‘17 and all subsequent line numbers which
appear after the RETURN key is pressed serve roughly the
same purpose as line numbers in BASIC except that in
assembly source code, line numbers are not referenced for
jumps to subroutines or in GOTO-like statements.

On line 1, enter an "*" (asterisk), An asterisk as the
first character in any line is similar to a REM statement
in BASIC - it tells the assembler that this is a remark
line and anything after the asterisk is to be ignored.
To confirm this, type the title '‘DEMO PROGRAM 1’ and hit
the RETURN key.

After return, the cursor once again drops down one line,
a ‘2" appears and the cursor skips a space.

Now, hit the space bar once and type ‘0BJ’, space again,
type ‘$30@¢’, and hit RETURN. Note in most cases the
‘0BJ’ pseudo—-op 1is neither required nor desirable.

On line 3, perform the same sequence: space, type "ORG,
space, type ’$30¢’, RETURN.

On line 4, do not space once after the line number. Type
‘BELL‘, space, ‘EQU’ space, "$FBDD’, RETURN.

Line 5 - Type ‘START', space 'JSR’, space 'BELL’, space,
‘s’ (semicolon), ‘RING THE BELL’, RETURN. Semicolons are
a convention often used within command lines to mark the
start of comments.

Line 6 - ‘END’, space, 'RTS’, RETURN.

The program has been completely entered, but the system
is still in ADD mode. To exit ADD, just press RETURN, or
type CTRL-X, RETURN. The “:’ prompt reappears at the
left of the screen, indicating that the system has
returned to control mode.

11

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

12, The screen should now appear like this:

1 *DEMO PROGRAM 1

2 0BJ $3p0

3 ORG $3p0

4 BELL EQU SFBDD

5 START JSR BELL ;RING THE BELL
6 END RTS

Note that each string of characters has been moved to a
specific field. There are four such fields, not including
the line numbers on the left.

FIELD #:

One is reserved for labels. BELL, START and END are
examples of labels.

Two is reserved for opcodes, such as the MERLIN pseudo-
ops OBJ, ORG and EQU, and the 65p2 opcodes JSR and RTS.

Three is for operands, such as $3¢¢, $FBDD and, in this
case, BELL.

Four will contain any comments,

It should be apparent from this exercise that it is not
necessary to input extra spaces in the source file for
formatting purposes.

In summary, after the line numbers:

1) Do not space for a label. Space once after a
label (if there is no label, once after the line
number) for the opcode.

2) Space once after the opcode for the operand. Space
once after the operand for the comment. If there
is no operand, type a space and a semicolon.

12

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

3.3. System and Entry Commands

MERLIN has a powerful and complex built-in editor. Complex
in the range of operations possible but, after a little
practice, remarkably easy to use.

The following paragraphs contain only minor clarifications
and brief demonstrations on the use of both sets of commands.
All System and Entry commands are used in EDITOR Control Mode
immediately after the ’:” prompt.

CTRL-X, CTRL-C or a RETURN as the first character of a line
exits the current [entry command] mode and returns the system
to control mode when ADDing or INSERTing lines. CTRL-X or
CTRL~C exits edit mode and returns the system to control mode
after BEditing lines.

The other System and Entry Commands are terminated either
automatically or by pressing RETURN.,

Inserting and deleting lines in the source code are both
simple operations. The following example will INSERT three
new lines between the existing lines 4 and 5.

1. After the “:” prompt, type “I” (INSERT), the number ’5’,
and press RETURN. All inserted lines will precede the
line numbers specified in the command.

2. Input an asterisk, and RETURN. Note that INSERT mode has
not been exited.

3. Repeat step 2.
4. Input one space, type 'TYA", and RETURN.
On the screen is the following:

;15
5%
6%
7 TYA
8

13

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

5. Hit RETURN and the system reverts to CONTROL mode.

6. LIST the source code.

:L
1 *DEMO PROGRAM 1
2 OBJ $3¢¢
3 ORG $309
4 BELL EQU SFBDD
5 *
6 *
7 TYA
8 START JSR BELL ;RING THE BELL
9 END RTS

The three new lines (5,6, and 7) have been inserted, and the
subsequent original source lines (now lines 8 and 9) have
been renumbered.

Using DELETE is equally easy.

1. In control mode, input ‘D5’, and RETURN. Nothing new
appears on the screen.

2. LIST the source code. The source listing is one line

shorter, one of the asterisk-only lines has disap-
peared, and the subsequent lines have been renumbered.

It is possible to delete a range of lines in one step.

1. 1In control mode, input ‘D5,6’ and RETURN,

2. LIST the source.

Lines 5 and 6 from the previous example, which contained the
remaining asterisk and the TYA opcode, have been deleted, and

the subsequent lines renumbered. The listing appears the
same as in the subsection on INPUT, Step 13.

14

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

This automatic renumbering feature makes it IMPORTANT that
when deleting lines you remember to begin with highest line
number and work back to the lowest.

The Add, Insert, or Edit commands have several sub-commands
comprised of CTRL-characters. To demonstrate, using our BELL
routine:

1. After the “:” prompt, enter ‘E’ (the EDIT command) and a
line number ... (use 6" for this demonstration), and hit

RETURN. One line down and to the right the specified
line appears in its formatted state:

6 END RTS
and the cursor is over the 'E’ in ‘END’,
2. Type CTRL-D. The character under the cursor disappears.
Type CTRL-D again, and a third time, ‘END’ has been
deleted, and the cursor is positioned to the left of the

opcode.,

3. Hit RETURN and LIST the program. In line 6 of the source
code, only the line number and opcode remain.

4, Repeat step 1 (above).
5. This time, type CTRL~I. Don’t move the cursor with the
space bar or arrow keys. Type the word 'END’, and

RETURN.

6. LIST the program. Line 6 has been restored.

15

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

If you are editing a single line, hitting RETURN alone re-
stores the control mode prompt. In step 1 (above), if you
had specified a range of lines (ex:'E3,6") after issuing the
EDIT command, RETURN would have called up the next sequential
line number within the specified range. As the lines appear,
you have the options of editing using the various sub-
commands, pressing RETURN which will call up the next line,
or exiting the EDIT mode using CTRL-C. NOTE: hitting RETURN
will enter the entire line in memory, exactly as it appears
on the screen.

The other sub-commands, CTRL-characters used under the EDIT
command, function similarly. Read the definitions in Section
3 and practice a few operations.

3.4. Assembly

The next step in using MERLIN is to assemble the source code
into object code.

After the ’:’ prompt, type the edit module system command ASM
and hit return. On your screen is the following;
UPDATE SOURCE (Y/N)?

Type N, and you will see:

ASM 1 *DEMO PROGRAM 1
2 OBJ $300
3 ORG $300
4 BELL EQU $FBDD
#3300 20 DD FB 5 START JSR BELL :RING THE BELL
#3903 60 6 END RTS

——END ASSEMBLY~--—
ERRORS: @

4 BYTES

16

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

SYMBOL TABLE - ALPHABETICAL ORDER
BELL =$FBDD ? END =$0303

? START =50300

SYMBOL TABLE ~ NUMERICAL ORDER

? START =$(300 ? END =50303

BELL =$FBDD

If instead of completing the above listing, the system beeps
and displays an error message, note the line number
referenced in the message, and press RETURN until the
", ..BYTES..." message appears. Then refer back to the
subsection on INPUT and compare the listing with step 13.
Look especially for elements in incorrect fields.

If all went well, to the right of the column of numbers down
the middle of the screen is the now familiar, formatted
source code,

To the left of the numbers, beginning on line 5, is a series
of numeric and alphabetic characters. This is the object
code — the opcodes and operands assembled to their machine
language hexadecimal equivalents.

Left to right, the first group of characters is the routine’s
starting address in memory (see the definition of OBJ and ORG
in the section entitled "Pseudo Opcodes ~ Directives").
After the colon is the number ‘2¢’. This is the one-byte
hexadecimal code for the opcode JSR.

NOTE: that the label ‘START’ is not assembled into object
code; neither are comments, remarks, or pseudo-ops such as
0BJ and ORG. Such elements are only for the convenience and
utility of the programmer and the use of the assembler pro-
gram. They are of no use to the computer and therefore, are
not translated into the machine’s language.

17

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

The next two bytes (each pair of characters is one byte) on
line 5 bear a curious resemblance to the last group of char-
acters on line 4; have a look. In line 4 of the source code
we told the assembler that the label “BELL’ EQUated with
address $FBDD. In line 5, when the assembler encountered
‘BELL’ as the operand, it substituted the specified address.
The sequence of the high and low-order bytes was reversed, a
6502 microprocessor convention.

The rest of the information presented should explain itself.
The total errors encountered in the source code was zero, and
four bytes of object code (count the bytes following the
addresses) was generated.

3.5. Saving and Running Programs

The final step in using MERLIN is running the program. Be-
fore that, it would be a good idea to save the source code.
OBJECT CODE SAVE must be preceded by a successful assembly.

1. Return to control mode if necessary, and type Q" RETURN.
The system has quit EDITOR mode and reverted to EXECUTIVE
(EXEC) mode. If the MERLIN system disk is still in the
drive, remove it and insert an initialized work disk.

After the '%2° prompt, type ‘S’ (the EXEC mode SAVE SOURCE
FILE command). The system will ask for a filename. Type
‘DEMOL’, RETURN. After the program has been saved, the
prompt returns.

2., Type ‘C’ (CATALOG) and look at the disk catalog. The
source code has been saved as a binary file titled
"DEMO1.8". The suffix ".8" is a file~labelling
convention which indicates the subject file is source
code. This suffix is automatically appended to the name
by the ‘8’ (SAVE SOURCE FILE) command.

18

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

3, Hit RETURN to return to EXEC mode and input ‘¢‘, for
OBJECT CODE SAVE. The object file is saved under the
same name as was earlier specified for the source file.
There is no danger of overwriting the source file because
no suffix is appended to object code file names.

While writing either file to disk, MERLIN also displays the
address parameter, and calculates and displays the length
parameter. It’s a good practice to take note of these.
Viewing the catalog will show that although the optional A$
and L$ parameters were displayed on the EXEC mode menu, they
were not saved as part of the file names. If you’d prefer to
have this information in the disk catalog, use the DOS RENAME
command. Make sure no commas are included in the new file
name,

Return to EDITOR mode, type "MON’, RETURN and the monitor
prompt “*" appears. Enter “3¢¢G’, RETURN. A beep is heard.
The demonstration program was responsible for it. It works!

Now you can return to the EXEC by typing CTRL~Y and hitting
RETURN,

3.6. Making Back-~up Copies of MERLIN

To make back~up copies of the MERLIN diskette, you should use
the copy program provided on the original diskette. To run
this, simply boot on the diskette, and as the drive light
comes on, press the ‘C” key on the keyboard. The program
will verify your intention to produce a copy, and then ask
the slot and drive values for the SINGLE DRIVE on which the
copy is to be made. A single drive is used to assure maximum
reliability in the copy.

Be careful during the copy process to appropriately alternate

the original and copy diskettes. If at any time, you make an
error, STOP IMMEDIATELY and re-~boot to start over.

19

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

When completed, it is highly recommended that you use ONLY
the BACK-UP copy of MERLIN in your daily work, and keep the
original in a safe place. The copy program will provide a
total of 3 back-up coples, giving you a total of 4 working
copies of the MERLIN assembler. In addition, files may be
transferred from one diskette to another. This means that
damaged files on a given diskette may be replaced with a
known "good" file from another diskette., Use the FID file
transfer utility on your Apple System Master diskette to move
the file from the original master diskette to the one on
which the file was damaged. All library files, and also the
side containing SOURCEROR.FP can be moved to any DOS 3.3
diskette using the FID utility program.

20

MERLIN Users Manual EXECUTIVE MODE

4., EXECUTIVE MODE

The EXECUTIVE mode is the program level provided for file
maintenance operations such as loading or saving code or
cataloging the disk. The following sections summarize each
command available in this mode.

4,1. C:CATALOG

After showing the catalog, this command accepts any disk
command you wish to give, using standard DOS syntax. Unlike
the LOAD, APPEND and SAVE commands, you must type the ".8"
suffix when referencing a source file. This facility is
provided primarily for locking and unlocking files. Do not
use it to load or save files. If vou do not want to give a
disk command, just hit RETURN. To cancel a partially typed
command use CTRL-X, make sure the command is in the wrong
syntax (type some commas) or just backspace to the beginning.
If you type CTRL-C RETURN after "COMMAND:", you will be
presented with the EXEC mode prompt "Z". You can then issue
any EXEC command such as "L” for LOAD. This permits you to
give an EXEC mode command while the catalog is still om the
screen. In addition, if CTRL~C is typed at the "CATALOG
pause' point, printing of the remainder of the catalog is
aborted.

4.2, L:LOAD B

This is used to load a source file from disk. You will be
asked for the name of the file. You should not append ".8"
since MERLIN does this automatically. If you have hit "L" by
mistake, just hit RETURN twice and the command will be can-
celled without affecting any file that may be in memory.

21

MERLIN Users Manual EXECUTIVE MODE

After a load (or append) command, you are automatically
placed in the editor mode, just as if you had hit "E". The
source will automatically be loaded to the correct address.
Subsequent LOAD or SAVE commands will display the last used
filename, followed by a flashing "?". If you hit the "Y"
key, the current file name will be used for the command. If
you hit any other key (e.g. RETURN) the cursor will be placed
on the first character of the filename, and you may type in
the desired name. RETURN alone at this time will cancel the
command.

4.3. S:SAVE

Use this to save a source file to disk. As in the load
command, you do not specify the suffix ".S" and you can hit
RETURN to cancel the command. NOTE: that the address and
length of the source file are shown on the MENU, and are for
information only. You should not use these for saving; the
assembler remembers them better than you can and sends them
to DOS automatically. As in the LOAD command above, the
filename will be displayed and you may type "Y" to SAVE the
same filename, or any key for a new file name.

4,4, A:APPEND

This loads in a specified source file and places it at the
end of the file currently in memory. It operates in the same
way as the load command, and does not affect the default file
name. It does not save the appended file; you are free to do
that if you wish.

22

MERLIN Users Manual EXECUTIVE MODE

4.5, D:DRIVE

When you hit "D", the drive used for saving and loading, will
change from one to two or two to one. The currently selected
drive is shown on the menu. When MERLIN is first BRUN, the
selected drive will be the one used by the BRUN, There is no
command to specify slot number, but this can be accomplished
by typing "C" for CATALOG which will display the current
disks directory. Then give the disk command "CATALOG, Sn",
where n is the slot number. This action will catalog the
newly specified drive.

4.6, E:EDITOR

This command places you in the EDITOR/ASSEMBLER mode. It
automatically sets the default tabs for the editor to those
appropriate for source files.

4,7, O0:SAVE OBJECT CODE

You are permitted to use this command only after the success-—
ful assembly of a source file. In this case you will see the
address and length of the object code on the menu. As with
the source address, this is given for information only.

NOTE: that the object address shown is that of the program’s
ORG (or $80@P by default) and not that of the actual current
location of the assembled code (which is $80@8 or whatever
0BJ you have used). When using this command, you are asked
for a name for the object file. Unlike the source file case,
no suffix will be appended to this name.

23

MERLIN Users Manual EXECUTIVE MODE

Thus you can safely use the same name as that of the source
file (without the ".S" of course). When this object code is
saved to the disk its address will be the correct one, the
one shown on the menu. When later, you BLOAD or BRUN it, it
will go to that address, which can be anything ($30¢,$8¢¢,
etc.). There is usually no need to use an OBJ in the source
code, unless the object code will be too long for the space
available at $800¢ and above.

4.8, Q:QUIT

This exits to BASIC. You may re~enter MERLIN by issuing the
"ASSEM" command. This re-entry will be a warm start, which
means it will not destroy the source file currently in
memory. This exit can be used to give disk commands, if it
is more convenient than the one provided by "C",

4,9. R:READ

This reads text files into MERLIN. They are always appended
to the current buffer, To clear the buffer and start fresh,
the name given will become the default filename. Appended
reads will not do this.

When the read is complete, you are placed in the editor. If
the file contains lines longer than 255 characters, these
will be divided into two or more lines by the READ routine.
The file will be read only until it reaches HIMEM, will
produce a memory error if it goes beyond, and only the data
read to that point will remain.

The READ and WRITE command will append a "T." to the begin-
ning of the filename you specify UNLESS vou precede the
filename with a space or any other character in the ASCII
range of $20 to $40. This character will be ignored and not
used by DOS in the actual filename,

24

MERLIN Users Manual EXECUTIVE MODE

4,10, W:WRITE

This writes a MERLIN file into a text file instead of a
binary file. The speed of the READ and WRITE routines is
approximately that of a BLOAD or BSAVE. The WRITE routine
does a VERIFY after the write.

25

MERLIN Users Manual THE EDITOR

5. THE EDITOR

Basically there are three modes in the editor: the COMMAND
mode, the ADD or INSERT mode, and the EDIT mode. The main
one is the COMMAND mode, which has a "ecolon" (:) as proumpt.

5,1. Command Mode

For many of the COMMAND mode commands, only the first letter
of the command is required, the rest being optional. We show
the required command characters in upper case and the option-
al ones in lower case. In some commands, you must specify a
line number, a range or a range list. A line number is just
a number. A range is a pailr of line numbers separated by a
comma. A range list consists of several ranges separated by
"slashes" (/).

Several commands allow specification of a string. The string
must be "delimited" by a non-numeric character other than the
slash. Such a delimited string is called a d~string. The
usual delimiter is single or double “quote marks" (* or ")

Line numbers in the editor are provided automatically. You
never type them when entering text; only when giving com~
mands. 1If a line number in a range exceeds the number of the
last line, it is automatically adjusted to the last line
number. The commands are:

5.1,1. HImem

(a number, decimal or hex, between the end of source and
38995 decimal, $9853). This command is rarely needed.
It sets the upper limit for the source file and begin~—
ning address for the OBJ file (default OBJ address).
HIMEM defaults to $8¢@#, and does not have to be set
unless you use a non-default object address.

27

MERLIN Users Manual THE EDITOR

5.1.2. NEW

Deletes present source file, resets HIMEM to $8¢(¢¢Q
and starts fresh.

5.1.3. PR#(0-7)

Same function as in BASIC. Mainly used for sending an
editor or assembly listing to a printer. DO NOT use
this to select an 8@-column card.

5.1.4. USER

This does a JSR $3F5. (That is the Applesoft ampersand
vector location, which normally points to an RTS.) The
designed purpose of this command is for the connection
of user defined printer drivers. (You must be careful
that your printer driver does not use zero page ad-
dresses, except the 1/0 pointers and $60 - $6F, because
this is likely to interfere with MERLIN’s heavy zero
page usage).

5.1.5. TABS
TABS number, number, ... <tab character>

This sets the tabs for the editor, and has no effect on
the assembler listing. Up to nine tabs are possible.
The default tab character is a space, but any may be
specified. The assembler regards the space as the only
acceptable tab character for the separation of labels,
opcodes, and operands. If you don’t specify the tab
character, then the last one used remains. Entering
TABS and a carriage return will set all tabs to zero.

28

MERLIN Users Manual THE EDITOR

5.1.6. LENgth

This gives the length in bytes of the source file, and
the number of bytes remaining before HIMEM (usually
$80@¢ ~ not BASIC HIMEM).

5.1.7. Where
Where (line number)

This prints in hex, the location in memory of the start
of the specified line. Where "@" (or YWE") will give
the location of the end of source.

5.1.8. MONitor

This exits to the monitor. You may re-enter by either
CTRL~C, CTRL-B or CTRL-Y., These re-establish the im-
portant zero page pointers from a save area inside
MERLIN itself. Thus CTRL-Y will give a correct entry,
even if you have messed up the zero page pointers while
in the monitor. DOS is not connected when using this
entry to the monitor. This facility 1is designed for
experienced Apple programmers, and is not recommended to
beginners. You may re—enter the editor directly with an

3G,

This re—entry, unlike the others, will use the zero page
pointers at $JA ~ $QF instead of the ones saved upon
exit. Therefore, you must be sure that they have not
been altered.

29

MERLIN Users Manual THE EDITOR

5.,1.9., TRuncON

This sets a flag which, during LIST or PRINT, will
terminate printing of a line upon finding a space fol~
lowed by a semicolon. It makes reading of source files
easier on the Apple 4@ column screen. In the assembler,
it limits printing of the object code to three bytes per
line and has no effect on comments.

5.1.10. TRuncOFf

This returns to the default condition of the truncation
flag (which also happens automatically upon entry to the
editor from the EXEC mode or from the assembler). In
the assembler, this directs that all object bytes be
printed.

5.1.11. Quit

Exits to EXEC mode.

5.1.12, ASM

30

This passes control to the assembler, which attempts to
assemble the source file. First, however, you are asked
if you wish to "update the source". This is to remind
you to change the date or identification number in your
source file., If you answer "N" then the assembly will
proceed. If you answer "Y', you will be presented with
the first line in the source containing a "/" and are
placed in EDIT mode. When you finish editing this line
and hit RETURN, assembly will begin. If you use the
CTRL~C edit abort command, however, you will return to
the EDITOR command mode, and any I/0 hooks you have
established, by PR# etc., will have been disconnected.
This will also happen if there is no line with a "/".

MERLIN Users Manual THE EDITOR

NOTE: By establishing a comment line with "*/" at
the beginning, you have a nearly automatic method of
keeping track of multiple versions of a program.

5.1.13. Control=-D

During the second pass of assembly, typing a CIRL-D will
toggle the list flag, so that listing will either stop
or resume. This will be defeated if a LST opcode occurs
in the source, but another CTRL~D will reinstate it.

5.1.14. Delete

Delete {(line number) <range> <range list)>
Delete (range)
Delete {range list)

This deletes the specified lines. Since, unlike BASIC,
the line numbers are fictitious they change with any
insertion or deletion. Therefore, vou MUST specify the
‘higher” range first!

5.1.15. Replace

Replace (line number)
Replace (range)

This deletes the line number or range, then places you
into INSERT mode at that location.

31

MERLIN Users Manual THE EDITOR

5.1.16. List

List (line number)
List (range)
List (range list)

Lists the source file with added line numbers. Control
characters in source are shown in inverse, unless the
listing is being sent to a printer or other nonstandard
outport. The listing can be aborted by CTRL-C or with
"/ key, You may stop the listing by hitting the space
bar and then advance a line at a time by hitting the
space bar again. Any other key will restart it. This
space bar pause also works during assembly and the
symbol table print out.

5.1.17. .« (period)

Lists starting from the beginning of the last specified
range. For example, if you type L1¢,1¢@ then lines 10
to 10¢ will be listed. If you then use ".", listing
will start again at 1@ and continue until stopped (the
end of the range is not remembered).

5.1.18, / (line number)

32

This continues listing from the last line number listed,
or, when a line number is specified, from that line.
This listing continues to the end of the file or until
it is stopped as in LIST.

MERLIN Users Manual THE EDITOR

5.1.19. Print

Print (line number)
Print (range)
Print (range list)

This is the same as LIST except that line numbers are
not added.

5.1.20. PRinTeR (command)

This command is for sending a listing to a printer with
page headers and provision for page boundary skips. The
default parameters may be set up using the configuration
program, The syntax of this is:

PRTR slot# <string> <page header>

If the slot number used is more than seven, a JSR §3F5
(ampersand vector) is done and it is expected that the
routine there will connect a printer driver by putting
its address $36-$37.

If the page header is omitted, the header will consist
of page numbers only.

THE INITIALIZATION STRING MAY NOT BE OMITTED., If no
special string is required by the printer, use an un-
recognized control character or a null string (in which
case a carriage return will be used). Examples of
initialization strings are CIRL-Q for IDS printers, or
CTRL-I8@N for most Apple cards.

PRTR @ (no strings required here) will allow you to see
where the page breaks occur. If an 8f column card is in
use in slot 3, then use PRTR 3 for this. No output is
sent to the printer until a LIST, PRINT, or ASM command
is issued.

33

MERLIN Users Manual THE EDITOR

5.,1.21. Find

Find (range)
Find (range list)
Find (d~string)

This lists those lines containing the specified string.
It may be aborted with CTRL~C or "/" key. Since the
CTRL~L case toggle works in command mode, you can use it
to find or change strings with lower case characters.

5.1.22. Change

Change (range)
Change (range list)
Change (d-string d-string)

This changes occurrences of the first d-string to the
second d~-string. The d-string must have the same de-
limiter with the adjoining ones coalescing. For ex-
ample, to change occurrences of "speling to "spelling”
throughout the range 20,1¢¢, you would type "C20¢,1¢¢
speling spelling”. If no range is specified, the entire
source file is used.

Before the change operation begins, you are asked
whether you want to change "all" or "some". If you
select "some" by hitting the "S8" key, the editor stops
whenever the first string is found and displays the line
as it would appear with the change. If you then hit
ESCAPE or any control character, the change displayed
will not be made. Any other key, such as the space bar,
will accept the change., CTRL~C or "/" key will abort
the change process.

5.1.23. COPY

COPY (line number or range) TO (line number)

This copies the range to just ‘above’ the specified
number. It does not delete anything.

34

MERLIN Users Manual THE EDITOR

5.1.24. MOVE

MOVE

(line number or range) TO (line number)

This is the same as COPY but after copying, automatical-
ly deletes the original range. You always end up with
the same lines as before, but in a different order.

5.1.25. Edit

Edit
Edit
Edit
Edit
Edit
Edit
Edit

(line number)

(range)

(range list)

(d-string)

(1line number) (d-string)
(range) (d-string)
(range list) (d-string)

This presents the range, etc., line by line to be edited
and puts you into the EDIT mode. If a d-string is
appended, only those lines containing the d-string are
presented.

5.1.26. Hex-Dec Conversion

1f, in the command mode, you type a decimal number
(positive or negative) the hex equivalent is returned,
If you type a hex number, prefixed by "$", the decimal
equivalent is returned. All commands accept hex num-
bers, which are mainly convenient for the HIMEM and SYM
commands .

35

MERLIN Users Manual THE EDITOR

5.,1.27. TEXT

This converts ALL spaces in a source file to inverse
spaces. The purpose is for use on "text" files so that
it is not necessary to remember to zero the tabs before
printing such a file. This conversion has no effect on
anything except the editor’s tabulation.

5.1.28. FIX

This undoes the effect of TEXT. It also does a number
of technical housekeeping chores. It is recommended
that the command FIX be used on all files from external
sources, after which the file should be saved. NOTE:
that the TEXT and FIX routines are written in SWEET 16
and are somewhat slow. Several minutes may be needed
for their execution on large files. FIX or an EDIT will
truncate any lines longer than 255 characters.

5.1.29. SYM

36

MERLIN places the symbol table on the language card (in
bank 1 of $D@FP~$DFFF). This space is gquite adequate
for all but gigantic programs. In case this space is
used up, the SYM command gives you a means to direct the
assembler to continue the symbol table in another area.
If you type SYM $90@@¢, for example, and assemble the
program, when and if the symbol table uses up its normal
space, it will be continued at $900¢ until it reaches
BASIC HIMEM. It must be noted that the SYM command will
be cancelled by a HIMEM command or by exit to EXEC mode
and re—entry (set HIMEM before setting up a SYM ad-
dress.) The SYM address must be above HIMEM and below
BASIC HIMEM, If the symbol table grows beyond the
allotted space, you will get a memory error during the
first pass of assembly.

MERLIN Users Manual THE EDITOR

5.1.30. VIDeo

This command is designed to select or deselect an 8¢
column board., The default condition can be selected
using the configuration program. This is similar to the
use of PR# in BASIC. DO NOT USE PR# to select an 8¢
column board! PR# is designed for selection of a
printer ONLY. An 8§ column board in slot 3 for example,
can be selected by typing, from the editor: VIDEO 3.

It is deselected by VIDEO @ or VIDEO $1¢ possibly fol-
lowed by RESET. The latter two forms both select the
standard Apple screen, but VIDEO @ will cause all lower
case output to the screen to be converted to upper case
except lower case in the source file will be converted
to flashing upper case (output to a printer is never
converted). If you have a lower case adapter, you will
want to use VIDEO $1¢ (or VIDEO 16) instead of VIDEO @
when selectng the Apple screen. If your 8¢ column card
has a software screen switch via an escape sequence,
this may be used to return to 40 column mode. This will
be equivalent to "VID $1§" and would have to be followed
by a VID § if you don’t have a lower case adapter. For
example, use ESC CTRL-Q RETURN on the Smarterm or ESC-Q~-
CTRL-X on the Sup"R"term.

5.1.31. FW (Find Word)
FW "word"
This is an alternative to the (F)IND command. It will
find the specified word only if it is surrounded, in
source, by non—-alphanumeric characters. Therefore,
FW'CAT" will find:
CAT
CAT~1
(CAT,X)

but will not find CATALOG or SCAT.

37

MERLIN Users Manual THE EDITOR

5.1.32. CW (Change word)

CW "word" new stuff"

This works as described under FW.

5.1.33. EW (Edit word)

EW "word"

This is to EDIT as FW is to FIND.

5.1.34. VAL

VAL "expression"

38

This will return the value of the expression as the
assembler would compute it.

Examples:

VAL "LABEL" gives the address (or value)
of LABEL for the last assem-
bly done or "unknown label”
if not found.

VAL "s$1¢9¢/2" returns $P80¢
VAL "%1¢09" returns $PPO8
VAL I"A" - "@"! returns $@@11

NOTE: For the commands involving a string, the charac-
ter """ acts as a "WILD CARD". Therefore, F'Jon"s" will
find both "Jones" and "Jonas'.

MERLIN Users Manual THE EDITOR

5.2. Add/Insert Mode

The ADD and INSERT modes in the editor act as if you are in
the mode, except that CTRL-R will do nothing, and the exit
from ADD mode acts as described., Hitting RETURN, for
example, will accept the entire line as shown on the screen,

5.2.1. Add

This places you in the ADD mode, and acts much like
entering BASIC lines with auto line numbering. However,
you may enter lower case text (useful for comments if
you have a lower case adapter) by typing CTRL-L. This
acts as a case toggle, so another CTRL~L returns you to
UPPERCASE mode. To exit from ADD mode, hit RETURN as
the FIRST character of a line. You may enter an EMPTY
line by typing a space and then RETURN. This will not
enter the space into text, it only bypasses the exit.
The editor automatically removes extra spaces at the end
of lines. You may also exit the ADD mode by CTRL-X or
CTRL-C which also cancels the current line.

5.2.2. Insert
Insert (line number)
This allows you to enter text just ‘above’ the specified
line. Otherwise, it functions the same as ADD mode.
5.2.3. Control-L
Toggles the current case. If you are in upper case,
CTRL-L will place you in lower, and vice versa. Upper
case is defaulted to when entering each new line.

To change the case of a word, type CTRL-L, then copy
over the word using the right arrow.

39

MERLIN Users Manual THE EDITOR

5.3. Edit Mode

After typing E in the editor, you are placed in EDIT mode.
The first line of the range you have specified is placed on
the screen with the cursor on its first character. The line
is tabbed as it is in listing, and the cursor will jump
across the tabs as you move it with the arrow keys. When you
are through editing, hit RETURN.

The line will be accepted as it appears on the screen, no
matter where the cursor is when you hit RETURN. The EDIT
commands and functions are very similar, but not identical to
those in Neil Konzen’s Program Line Editor and Southwestern

Data System’s A.C.E. All commands except CTRL-R are avail-
able in ADD and INSERT modes.

5.4, Edit Mode Commands

5.4.1. Control-I (insert)
Begins insertion of characters. This is terminated by

any control character except the CTRL-L case toggle,
such as the arrows or RETURN,

5.4.2, Control-D (delete)

Deletes the character under the cursor,

5.4.3. Control-F (find)

Finds the next occurrence of the character typed after
the CTRL-F., This is recursive.

40

MERLIN Users Manual

S.4.4, Control-0 (insert special)

THE EDITOR

Functions as CTRL-I, except it inserts any control char-
acter (including the command characters such as CTRL-Q).

Besides enabling the insertion of control characters,
CTRL-0 also allows the user to type characters not
normally available on the Apple keyboard.

Control—-0 followed by:

gives
i1

OB H RRFOZERERVA

Control _
Control \

D et ey

T
|
!

(whatever S$FF gives on
your machine)

NOTE: 1If you are using a shift key modification, de—
pending on which one you have, shift-M may give upper-
case M and you will have to use CTRL-0 to get the right

bracket.

5.4.5, Control-P (do **#*)

1f entered as first character of a line gives 32 *’s.

5.4,6., Control-@ (do border)

If entered as first character of a line gives 30 spaces

bordered by *'s.

41

MERLIN Users Manual THE EDITOR

5.4.7. Control-C or Control-X (cancel)
Aborts EDIT mode and returns to the editor’s warm
start. The current line being edited will retain its
original form.

5.4.8. Control-B (go to line begin)

Places the cursor at the beginning of the line.

5.4.9. Control-N (go to line end)
Places the cursor one space to the right of the end of
the line.

5.4,10. Control-R (restore line)
Returns the line to its original form. (Not available
in ADD and INSERT modes.)

5.4.11, Control-Q (delete line right)

Deletes the part of the line following the cursor.

5.4.12. Return (RETURN key)

Accepts the line as it appears on the screen and fetches
the next line to be edited, or goes to the warm start if
the specified range has been completed.

The editor automatically replaces spaces in comments and
ASCII strings with inverse spaces. When listing, it converts
them back, so you never notice this. Its purpose is to avoid
inappropriate tabbing of comments and ASCII strings.

42

MERLIN Users Manual THE EDITOR

Tn the case of ASCII strings, this is only done when the
delimiter is a quote (") or a single quote (). You can,
however, accomplish the same thing by editing the line,
replacing the first delimiter with a quote, hitting RETURN,
then editing again and changing the delimiter back to the
desired one.

43

MERLIN Users Manual THE ASSEMBLER

6. THE ASSEMBLER

This section of the documentation will not attempt to teach
you assembly language. It will only explain the syntax you
are expected to use in your source files, and document the
features that are available to you in the assembler.

6.1. Number Format

The assembler accepts decimal, hexadecimal, and binary
numerical data. Hex numbers must be preceded by "$" and
binary numbers by "%, thus the following four instructions
are all equivalent:

LDA #1090 LDA #3564 LDA #Z11001¢9 LDA #701106109

As indicated, leading zeros are ignored. The "#' here stands
for "number" or "data", and the effect of these instructions
is to load the accumulator with the number (decimal) 100.

A number not preceded by "#" is interpreted as an address.
Therefore:

<LDA 1009 LDA $3E8 LDA %1111191000>

are equivalent ways of loading the accumulator with the byte
that resides in memory location $3E8.

45

MERLIN Users Manual THE ASSEMBLER

Use the number format that is appropriate for clarity. For
example, the data table:

DA 31
DA $A
DA $64
DA $3ES
DA $271¢

is a good deal more mysterious that its decimal equivalent:

DA 1

DA 19

DA 100
DA 1009
DA 19009

6.2, Source Code Format
A line of source code typically looks like:
LABEL OPCODE OPERAND ;COMMENT

A line containing only a comment must begin with "*", Com-
ment lines starting with ";" are accepted and tabbed to the
comment field., The assembler will accept an empty line in
the source code and will treat it just as a SKP 1 instruction
(see the section on pseudo opcodes), except the line number
will be printed.

The number of spaces separating the fields is not important,
except for the editor’s listing, which expects just one
space.

The maximum allowable LABEL length is 13 characters, but more
than 8 will produce messy assembly listings., A label must
begin with a character at least as large, in ASCII value, as
the colon, and may not contain any characters less, in ASCII
value, than the number zero.

46

MERLIN Users Manual THE ASSEMBLER

The assembler examines only the first 3 characters of the
OPCODE (with certain exceptions such as the Sweet 16 opcode
POPD). For example, you can use PAGE instead of PAG (because
of the exception, the fourth letter should not be a D,
however). The assembler listing will truncate the opcode to
seven letters and will not look well with one longer than
four unless there is no operand.

The maximum allowable combined OPERAND+COMMENT length is 64
characters. You will get an error if you use more than this.
A comment line by itself is also limited to 64 characters.

6.3. Expressions

To make clear the syntax accepted and/or required by the
assembler, we must define what is meant by an "expression'.
Expressions are built up from "primitive expressions" by use
of arithmetic and logical operations. The primitive expres-
sions are:

1. A label.

2. A decimal number.

3. A hexadecimal number (preceded by "$§").

4. A binary number (preceded by "%").

5. Any ASCII character preceded, or enclosed by quotes
or single quotes.

6. The character * (standing for the present address).

All number formats accept 16-bit data and leading zeros are
never required. In case 5, the "value"” of the primitive
expression is just the ASCII value of the character. The
high~bit will be on if a quote (") is used, and off if a
single quote (') is used.

The assembler supports the four arithmetic operations: +, -,

/, and *. It also supports the three logical operations: ! =
Exclusive OR, . = OR, and & = AND.

47

MERLIN Users Manual THE ASSEMBLER

Some examples of legal expressions are:

LABEL1-LABELZ
2#LABEL+$231
12344710111
"KH""A“‘!"}.
"@"ILABEL
LABEL&STF

#e)

LABEL.% 10000000

Parentheses have another meaning and are not allowed in
expressions, All arithmetic and logical operations are done
from left to right (2+3%5 would assemble as 25 and not 17),

6.4, Immediate Data

For those opcodes such as LDA, CMP, etc., which accept im~-
mediate data (numbers as opposed to addresses) the immediate
mode is signalled by preceding the expression with "#". An
example is LDX #3. In addition:

#<expression produces the low byte of the expression

#>expression produces the high byte of the expression

#expression also gives the low byte (the 65¢2 does
not accept 2-~byte DATA)

#/expression is optional syntax for the high byte

of the expression

The ability of the assembler to evaluate expressions such as
LAB1~LA2-1 is very useful for the following type of code:

COMPARE LDX #FOUND~DATA-1
Loop CMP DATA,X
BEQ FOUND
DEX
BPL LOOP
JMP REJECT snot found
DATA HEX E3BC3498
FOUND RTS

48

MERLIN Users Manual THE ASSEMBLER

With this type of code, if you add or delete some of the
"Data", then the appropriate X~index for the comparison loop
is automatically adjusted.

6.5. Addressing Modes (6502 Opcodes)

The assembler accepts, all the 6502 opcodes with standard
mnemonics. It also accepts BLT (branch if less than) as an
equivalent to BCC, and BGE (branch if greater or equal) as an
equivalent to BCS.

There are 12 addressing modes on the 653§2. The appropriate
MERLIN syntax for these are:

Example
Syntax
Implied OPCODE CLC
Accumulator OPCODE ROR
Immediate (data) OPCODE #expr ADC #$F8
cMP #rMY
LDX #>LABEL1~LABEL2~1
Zero page (address) OPCODE expr ROL 6
Indexed X OPCODE expr,X LDA S$Ef,X
Indexed Y OPCODE expr,Y STX LAB,Y
Absolute (address) OPCODE expr BIT $3¢¢
Indexed X OPCODE expr,X STA $4000,X
Indexed Y OPCODE expr,y SBC LABEL~1,Y
Indirect JMp (expr) JMP ($3F2)

Preindexed X OPCODE (expr,X) LDA (6,X)
Postindexed Y OPCODE (expr),Y STA ($FE),Y

NOTE: There is no difference in syntax for zero page and
absolute modes. The assembler automatically uses zero page
mode when appropriate. In the indexed, indirect modes, only
a zero page expression is allowed, and the assembler will
give an error message if the "expr" does not evaluate to a
zero page address.

49

MERLIN Users Manual THE ASSEMBLER

NOTE: The "accumulator mode” does not require (or accept) an
operand. OSome assemblers perversely require you to put an
"A" in the operand for this mode.

The assembler will decide the legality of the addressing mode
for any given opcode.

Additionally, MERLIN provides the ability to FORCE non-zero
page addressing. The way to do this is to add anything
(except "D") to the end of the opcode. Example:

LDA $1¢ assembles as zero page (2 bytes) while,
LDA: 519 assembles as non-zero page (3 bytes).

6.6. Sweet 16 Opcodes

The assembler accepts all Sweet 16 opcodes with the standard
mnemonics. The usual Sweet 16 registers R@ to R15 do not
have to be "equated” and the "R" is optional. TED LI+ users
will be glad to know that the SET opcode works as it should,
with numbers or labels. For the SET opcode, either a space
or a comma may be used between the register and the data part
of the operands; that is, SET R3,LABEL is equivalent to SET
R3 LABEL., It should be noted that the NUL opcode is
assembled as a one~byte opcode (the same ag HEX D) and not a
two byte skip as this would be interpreted by ROM Sweet 16.
This is intentional, and is done for internal reasons.

50

MERLIN Users Manual THE ASSEMBLER

6.7, Pseudo Opcodes — Directives

6.7.1. EQU (=)

EQU expression (EQUals)
= expression (optional syntax)

Used to define the value of a LABEL, usually an exterior
address or an often used constant for which a meaningful
name is desired. It is recommended that these all be
located at the beginning of the program. The assembler
will not permit an "equate" to a zero page number after
the label equated has been used, since bad code could
result from such a situation (also see "Variables'').

6.,7.2. ORG
ORG expression (ORiGin)

Establishes the address at which the program is designed
to run., It defaults to the present value of HIMEM
($800¢ by default). Ordinarily there will be only one
ORG and it will be at the start of the program. If more
than one ORG is used, the first one establishes the
BLOAD address. This can be used to create an object
file that would load to one address though it may be
designed to run at another address.

You cannot use ORG *-1, etc. to back up the object

pointers as is done in some assemblers. This must be
done instead by DS-1.

51

MERLIN Users Manual THE ASSEMBLER

6.7.3. O0BJ

OBJ expression (OBJect)

Establishes the address at which the object code will be
placed during assembly. It defaults to HIMEM. There is
rarely any need to use this pseudo-op and inexperienced
programmers are urged not to use it. An OBJ above BASIC
HIMEM (or the SYM address, if any) will defeat genera-
tion of object code. This may be used when sending a
long listing to a printer or when using direct assembly
to disk (opcode DSK).

6.7.4. PUT

PUT

52

filename

PUT FILENAME, (drive and slot parameters accepted in
standard DOS syntax) will read the named file (with the
"T." prefix appended unless the filename starts with a
character less than "@") and "inserts" it at the lo-
cation of the opcode.

NOTE: ‘"Insert" refers to the effect on assembly of the
location of the source., The file itself is actually
placed just following the main source., Text files are
required by this facility in order to insure memory
protection. A memory error will occur if a PUT file
goes beyond HIMEM. These files are in memory only one a
time, so a very large program can be assembled using the
PUT facility.

There are two restrictions on a PUT file. First, there
cannot be macro DEFINITIONS inside a PUT file, they must
be in the main source. Second, a PUT file may not call
another PUT file with the PUT opcode. Of course, link~
ing can be simulated by having the "main program" just
contain the macro definitions and call, in turn, all the
others by the PUT opcode.

MERLIN Users Manual / THE ASSEMBLER

Any variables (e.g. JLABEL) may be used as "local”
variables. The usual local variables]1 through 18 may
be set up for this purpose using the VAR opcode,

The PUT facility provides a simple way to incorporate
much used subroutines, such as MSGOUT or PRDEC, in a
program,

6.7.5. VAR

VAR

eXPY ; eXPr;eXProe.

This is just a convenient way to equate the variables]l
~ 18. "VAR 3;$42;LABEL" will set]1 = 3,]2 = $42, and
13 = LABEL., This is designed for use just prior to a
PUT. 1If a PUT file uses]1 -]8, except in >>> lines
for calling macros, there MUST be a previous declaration
of these.

6.7.6. SAV

SAV

filename

SAVE FILENAME, (drive and slot parameters accepted) will
save the current object code under the specified name.
This acts exactly as does the EXEC mode object saving
command, but it can be done several times during
assembly.

This pseudo-opcode provides a means of saving portions
of a program having more than one ORG. 1t also enables
the assembly of extremely large files. After a save,
the object address is reset to the last specification of
0BJ or to HIMEM by default.

53

MERLIN Users Manual THE ASSEMBLER

The SAVE command sets the address of the saved file to
its correct value, For example, if your program con-
tains three SAV commands, then it will be saved in three
pleces. When BLOADed later, they will go to the correct
locations, the third following the second and that fol~-
lowing the first,

Together, the PUT and SAV opcodes make it possible to
assemble extremely large files.

6.7.7. DSK

DSK filename

DSK FILENAME will direct the assembler to assemble the
following code directly to disk. If DSK is in effect,
the old file will be closed and the new one begun. This
is useful primarily for extremely large files. For
moderately sized programs, SAV is preferred since it is
30% faster and theoretically more reliable. Because of
the way it works, the CHK opcode is incompatible with
DSK and will be disabled if DSK is in effect,

6.7.8. END

54

This rarely used or needed pseudo opcode instructs the
assembler to ignore the rest of the source. Labels
occurring after END will not be recognized.

MERLIN Users Manual THE ASSEMBLER

6.8,

Formatting

6.8,1. LST ON/OFF

LST ON or OFF (LiST)

This controls whether the assembly listing is to be sent
to the Apple screen and/or other output device. You
may, for example, use this to send only a portion of the
assembly listing to your printer. Any number of LST
instructions may be in the source. If the LST condition
is OFF at the end of assembly, then the symbol table
will not be printed. The assembler actually only checks
the third character of the operand to see whether or not
it is a space.

Therefore, LST ERINE will have the same effect as LST
OFF. The LST directive will have no effect on the
actual generation of object code. If the LST condition
is OFF, the object code will be generated much faster,
but this is recommended only for debugged programs.

NOTE: CONTROL-D from the keyboard toggles this flag
during the second pass.

6.8.2. EXP ON/OFF

EXP ON or OFF (EXPand)

EXP ON will print an entire macro during the assembly.
The OFF condition will print only the PMC pseudo-op.
EXP defaults to ON., This has no effect on the object
coded generated.

55

MERLIN Users Manual THE ASSEMBLER

6.8.3. PAU

PAU (PAUse)
On the second pass this causes assembly to pause until
a key is hit. This can also be done from the keyboard
by hitting the space bar.

6.8.4. PAG

PAG (PAGe)
This sends a formfeed ($8C) to the printer. It has no
effect on the screen listing even when using an 8(¢-
column card.

6.8.5. AST

AST expression (ASTerisks)
This sends Asterisks to the listing, the same number as
the value of the operand. The number format is the
usual one, so that AST 1¢ will send (decimal) 1@
asterisks, for example. The number is treated modulo
256 with @ being 256 asterisks! This differs from TED
II+, which recognizes the operand as a hex expression,
and will need to be converted.

6.8.6. SKP

SKP expression (SKiP)

This sends OPERAND number of carriage returns to the
listing. The number format is the same as in AST.

56

MERLIN Users Manual THE ASSEMBLER

6.8.7. TR

TR opcode

6.9.

This has the same effect in the assembler as does the
EDITOR TR command., TR or TR ON limits object code
printout to three bytes per line, and TR OFF resets it
to print all object bytes.

Strings

6.9.1. ASC

ASC dstring (ASCii)

This puts a delimited ASCII string into the object
code. The only restriction on the delimiter is that it
does not occur in the string itself. Different de-
limiters have different effects. Any delimiter less
than (in ASCII code) the single quote (') will produce a
string with the high-bits on, otherwise the high-bits
will be off. ¥or example, the delimiters !"#$%& will
produce a string in "negative" ASCII, and the delimiters
‘O+? will produce one in "positive'" ASCII. Usually the
quote (") and single quote (") are the delimiters of
choice, but other delimiters provide the means of in-
serting a string containing the quote or single quote
as part of the string.

6.9.2, DCI

DCI d-string (Dextral Character Inverted)

This is the same as ASC except that the string is put
into memory with the last character having the opposite
high bit to the others.

57

MERLIN Users Manual THE ASSEMBLER

6.,9.3. INV
INV d-string (INVerse)

This puts a delimited string in memory in inverse for-~
mat. All choices of delimiter have the same effect.

6.9.4., FLS
FLS d-string (FLaSh)

This puts a delimited string in memory in flashing for-
mat. All choices of delimiter have the same effect.

6.9.5. REV
REV d-string (REVerse)
Example: REV "DISK VOLUME" gives;

EMULOV KSID (delimiter choice as in ASC)

6.10. Data and Allocation

6.10.1. DA

DA expression (Define Address)
This stores the (two-byte) value of the operand, usually
an address, in the object code, low-byte first. DA

SFDFP will generate FY FD., Also accepts multiple data
(e.g. DA 1,10,140)

58

MERLIN Users Manual THE ASSEMBLER

6.10.2. DDB
DDB expression (Define Double-Byte)

As above, but places high-byte first. Also accepts
multiple data (e.g. DDB 1,10,169).

6.10.3., DFB
DBF expression (DeFine RBytes)

This puts the bytes specified by the operand into the
object code. It accepts several bytes of data, which
must be separated by commas and contain no spaces. The
standard number format is used and arithmetic is done as
usual., The "#" symbol is acceptable but ignored, as is
"¢, The ™" symbol may be used to specify the high-
byte of the label, otherwise the low-byte is always
taken. The "»" symbol should appear only as the first
character of an expression or ilmmediately after #, That
is, the instruction DFB S>LAB1-LAB2 will produce the
high~byte of the value of LAB1~LAB2,

For example:
DFB $34,100,LAB1-LAB2,%1911,>LAB1-LABZ
is a properly formatted DFB statement which will gen~

erate the object code (hex) 34 64 DE (BP9, assuming that
LAB1=$81A2 and LAB2=$77C4,

59

MERLIN Users Manual THE ASSEMBLER

6.,10.4. HEX

HEX hex data

This is an alternative to DFB which allows convenient
insertion of hex data. Unlike all other cases, the "§"
is not required or accepted here. The operand should
consist of hex numbers having two hex digits (e.g. @F,
not F). They may be separated by commas or may be
adjacent. An error message will be generated if the
operand contains an odd number of digits or ends in a
comma, or, as in all cases, contains more than 64
characters.

6.10.5, DS

DS expression (Define Storage)

This reserves space for string storage data. It does
not generate code. DS 1§, for example, will set aside
1¢ bytes for storage. Because DS adjusts the object
code pointer, and instruction like DS-1 can be used to
back up the object and address pointers one byte.

6.10.6. KBD

KBD (KeyBoarD)

60

This allows a label to be equated from the keyboard
during assembly. Its syntax is: LABEL KBD.

MERLIN Users Manual THE ASSEMBLER

6.10.7. LUP

LUP expression (Loop)
-=~ (end of LUP)

An example of the syntax for this is:

LUP 4
ASL

This will assemble as:

ASL
ASL
ASL
ASL

and will show that way in the assembly listing, with
repeated line numbers.

Perhaps the major use of this is for table building. As
an example:

1A = 9
LUP SFF

1A =]A+l
DFB A

will assemble the table 1, 2, 3, ..,$FF. The maximum
LUP value is $80¢¢ and the LUP opcode will simply be
ignored if you try to use more than this.

61

MERLIN Users Manual THE ASSEMBLER

6.10.8. CHK

CHK expression (CHecKsum)
This places a checksum byte into object code at the
location of the CHK opcode (usually at the end of the
program). It cannot be used when DSK is in effect.

6.10.9. ERR

ERR expression (ERRor)
ERR expression will cause a forced error if the expres-—
sion has a non-zero value and the message "Break in line

?7?7?" is printed.

This may be used to ensure your program does not exceed,
for example, S$95FF by adding the final line:

ERR *-1/$9600

NOTE: This would only alert vyou that the program is too
long, and will not prevent writing above $96%% during
assembly, but there can be no harm in this. The error
occurs only on the second pass of the assembly and does
not abort the assembly.

Another available syntax is:
ERR ($300)-$4C
which will produce an error on the first pass, and abort

assenbly, if location $3¢¢ does not contain the value
$4C,

62

MERLIN Users Manual THE ASSEMBLER

6.10,10. USR

USR (opcode)

This is a user definable pseudo opcode. It does a JSR
$B6DA. This location will contain an RTS after a boot,
a BRUN MERLIN or BRUN BOOT ASM. To set up your routine
you should BRUN it from the EXEC command after CATALOG.
This should just set up a JMP at $B6DA to the main
routine and then RTS., The following flags and entry
points may be used by your routine:

USRADS = $B6DA ;must have a JMP to your routine

PUTBYTE = SE5F6 ;see below

EVAL = $E5F9 :see below

PASSNUM = §2 ;contains assembly pass number

ERRCNT = §1D ;error count

VALUE = 555 ;value returned by EVAL

OPNDLEN = $BB ;contains combined length of
;operand and comment

NOTFOUN = §FD isee discussion of EVAL

WORKSP = $280 ;contains the operand and

scomment in positive ASCII

Your routine will be called by the USR opcode with A={,
Y= and carry set. To direct the assembler to put a
byte in the object code, you should JSR PUTBYTE with the
byte in A.

PUTBYTE will preserve Y but will scramble A and X. It
returns with the zero flag clear (so that BNE always
branches). On the first pass, PUTBYTE adjusts the
object and address pointers, so that the contents of the
registers are not important. You MUST call PUTBYTE the
SAME NUMBER OF TIMES on each pass or the pointers will
not be kept correctly and the assembly of other parts of
the program will be incorrect!

63

MERLIN Users Manual THE ASSEMBLER

64

If your routine needs to evaluate the operand, or part
of it, you can do this by a JSR EVAL. The X register
must point to the first character of the portion of the
operand you wish to evaluate (put X=@ to evaluate the
expression at the start of the operand). On return from
EVAL, X will point to the character following the ev-
aluated expression. The Y register will be ¢§, 1, or 2
accordingly as this character is a right parenthesis, a
space Or a comma.

Any other character not allowed in an expression will
cause assembly to abort with a BAD OPERAND error. If
some label in the expression is not recognized then
location NOTFOUND will be non—-zero. On the second pass,
however, you will get an UNKNOWN LABEL error and the
rest of your routine will be ignored. On return from
EVAL, the computed value of the expression will be in
location VALUE, VALUE+1, lowbyte first. On the first
pass this value will be insignificant if NOTFOUND is
NON~zero.

Appropriate locations for your routine are $3@@-~$3CF and
$8A¢-$8FF. You must not write to $90¢. For a longer
routine, you may use high memory, just below $9853. If
you are sure that the symbol table will not exceed $1000
bytes, you could use the S8YM EDITOR command to protect
your routine from overwrite by the object code. SYM
would have to be set at least one byte below your code.
You may use zero page locations $6@~$6F, but should not
alter other locations. Also, you must not change any-
thing from $226 to $27F, or anything from $2C4 to S$2FF,
Upon return from your routine (RTS), the USR line will
be printed (on the second pass).

MERLIN Users Manual THE ASSEMBLER

To gain further understanding of the use of USR, read
the source file SCRAMBLE.S or, for a more sophisticated
example, the file FLOAT.S. The first of these uses the
USR opcode to put an ASCII string into the object code
in a scrambled format. The second is a somewhat comp~-
licated routine that uses Applesoft to compute the
packed (five-byte) form of a specified floating point
number, and put it in the object code. Here, the latter
can be used for assembly only on an Apple]{ Plus.

When you use the USR opcode in a source file, it is wise
to include some sort of check (in source) that the
required routine is in memory. If, for example, your
routine contains the byte $31 at location $31f then:

ERR ($310)-$3

will test that byte and abort assembly if it is not
there. Similarly, if you know that the required routine
should assemble exactly two bytes of data, then you can
(roughly) check for it by the following code:

LABEL USR OPERAND
ERR *-LABEL~2

This will force an error on the second pass if USR does
not produce exactly two object bytes.

It is possible to use USR for several different routines
in the same source. For example, your routine could
check the first operand expression for an index to the
desired routine and act accordingly. Thus "USR 1,
whatever" would branch to the first routine, "USR
2,stuff"” to the second, etc.

65

MERLIN Users Manual THE ASSEMBLER

6.11.

6.11.

Conditionals

1. DO

DO expression

66

This, together with ELSE and FIN are the conditional
agssembly PSEUDO-OPS. 1If the operand evaluates to ZERO,
then the assembler will stop generating object code
(until it sees another conditional). Except for macro
names, it will not recognize any labels in such an area
of code. If the operand evaluates to a non~zero number,
then assembly will proceed as usual. This is very
useful for MACROS. It is also useful for sources de-
signed to generate slightly different code for different
situations. For example, if you are designing a program
to go to on a ROM chip, you would want one version for
the ROM, and another, with small differences to create a
RAM version for debugging purposes.,

Similarly, in a program with text, you may wish to have
one version for Apples with lower case adapters and one
for those without. By using conditional assembly,
modification of such programs becomes much simpler,
since you do not have to make the modification in two
separate versions of the source code. Every DO should
be terminated somewhere later by a FIN and each FIN
should be preceded by a DO. An ELSE should occur only
inside such a DO, FIN structure. DO, FIN structures may
be nested up to eight deep (possibly with some ELSE’s
between). If DO condition is off (value @), then
assembly will not resume until its corresponding FIN is
encountered, or an ELSE at this level occurs. Nested
DO, FIN structures are valuable for putting conditionals
in MACROS.

MERLIN Users Manual THE ASSEMBLER

6.11.2. ELSE

This inverts the assembly condition (ON-->OFF OR OFF~->
ON) for the last DO.

6.11.3. FIN

This cancels the last DO.

6.12. Macros

6.12,1. MAC
MAC (MACro)

This signals the start of a MACRO definition. It must
be labeled with the macro name, The name you use is
then reserved and cannot be referenced by things other
than the PMC PSEUDOOP (things like DA NAME will not be
accepted if NAME is the label on MAC). However, the
same thing can be simulated by preceding the MACRO with
LABEL EQU *, or LABEL DS ¢, etc. There is rarely any
need to do this. See the section on MACROS for details
of the usage of macros.

EOM (<L)

EOM (End Of Macro)
(<< (alternative syntax)

This signals the end of the definition of a macro. It
may be labeled and used for branches to the end of a
macro, or one of its copies.

67

MERLIN Users Manual THE ASSEMBLER

6.12,2. PMC (>>>)

PMC macro name (Put MaCro)
>>> macro name (alternative syntax)

This instructs the assembler to assemble a copy of
the named macro at the present location. See the
section on MACROS. It may be labeled.

6.13. Variables

Labels beginning with "]" are regarded as VARIABLES., These
may be defined only by EQU and cannot be used to label some-
thing else. They can be redefined as often as you wish. The
designed purpose of variables is for use in MACROS, but they
are not confined to that use.

Forward reference to a variable is impossible (with correct

results) but the assembler will assign some value to it.
That is, a variable should be defined before it is used.

68

MERLIN Users Manual MACROS

7. MACROS

7.1, Defining a Macro
A macro definition begins with
NAME MAC (no operand)

and NAME in the label field. Its definition is terminated by
the pseudo~op EOM or <KKX. The label NAME cannot be refer-
enced by anything other than PMC NAME (or >>> NAME).

You can define the macro the first time you wish to use it in
the program. However, it is preferable (and required if the
macro uses variables) to first define all macros at the start
of the program with the assembly condition OFF and then refer
to them when needed.

Forward reference to a macro definition is not possible, and
would result in a NOT MACRO error message. That is, the

- macro must be defined before it is called by PMC.

The conditionals DO, ELSE and FIN may be used inside a macro.

Labels inside macros, such as LOOP and OUT in the example on
page 5-5, are updated each time PMC is encountered.

Error messages generated by errors in macros usually abort
assembly, because of possibly harmful effects. Such messages
will usually indicate the line number of a PMC rather than
the line inside the macro where the error occurs.

7.2, Nested Macros

Macros may be nested to a depth of 15, For nesting, macros
must be defined with DO condition off.

69

MERLIN Users Manual MACROS

Here is an example of a nested macro in which the definition
itself is nested. (This can only be done when both defini-
tions end at the same place.)

TRDB MAC
>>> TR.]1+1;]12+1
TR MAC
LDA]1
STA]2
<K

In this example >>> TR.LOC;DEST will assemble as:

LDA LOC
STA DEST

and >>> TRDB.LOC;DEST will assemble as:

LDA LOC+1
STA DEST+1
LDA LOC
STA DEST

A more common form of nesting is illustrated by these two
macro definitions (where CH = $24):

POKE MAC
LDA #]2
STA 11
<L

HTABR MAC

>>> POKE.CH;]1
KK

70

MERLIN Users Manual MACROS

7.3. Special Variables

Eight variables, named]l through]8, are predefined and are
designed for convenience in MACROS., These are used in a PMC
statement. The instruction:

>>> NAME exprl;expr2;expr3...

will assign the value of exprl to the variable]1, that of
expr2 to]2, and so on. An example of this usage is:

TEMP EQU $10
DO 0

SWAP MAC
LDA
STA
LDA
STA
LDA
STA
&K
FIN
>>> SWAP $6;$7 ;TEMP
>>> SWAP $1000;$6; TEMP

e e Lt St e G
B = DN W =

This program segment swaps the contents of location $6 with
that of §7, using TEMP as a scratch depository, then swaps
the contents of $6 with that of $1000.

If, as above, some of the special variables are used in the
MACRO definition, then values for them must be specified in
the PMC (or >>>) statement. In the assembly listing, the
special variables will be replaced by their corresponding
expressions.

The number of values must match the number of variables in
the macro definition. A BAD OPERAND error will be generated
if the number of values is less than the number of variables.
No error message will be generated, however, if there are
more values than variables.

71

MERLIN Users Manual MACROS

The assembler will accept some other characters in place of
the space between the macro name and the expressions in a PMC
statement. For example, you may use any of these characters:

-/ =«

The semicolons are required, however, and no extra spaces are
allowed.

Macros will accept literal data. Thus the assembler will
accept the following type of macro call:

DO 0
MUV MAC

LDA]1

STA]2

KK

FIN

>>> MUV.(PNTR),Y;DEST
>>> MUV.#3;FLAG,X

It will also accept:

DO 0]
PRINT MAC
JSR SENDMSG
ASC]1
BRK
<K
FIN
>>> PRINT.!"quote'!
>>> PRINT. This is an example’
>>> PRINT."So’s this, understand?”

LIMITATION: If such strings contain spaces or semicolons,
they MUST be delimited by quotes (single or double). Also,
literals such as >>> WHAT."A" must have the final delimiter.
(This is only true in macro calls or VAR statements, but it
is good practice in all cases.)

72

MERLIN Users Manual MACROS

A previous version of this assembler, that did not have this
capability, used commas rather than semicolons in >>>
statements. For people who have that version, a program
"CONVERT" has been provided which changes these commas to
semicolons in a matter of a second or two. With the source
file in memory, it should be BRUN from the EXEC mode’s
Command after Catalog.

7.4, Sample Program

Here is a sample program intended to illustrate the usage of
macros with non-standard variable. It would, however, be
simpler and more pleasing if it used]1 instead of]1MSG (in
which case the variable equates should be eliminated and the
values for]1 must be specified in the >>> lines.)

HOME EQU SFC58

couT EQU SFDED

KEY EQU $C000

STROBE EQU $C010

DOS EQU $3D3
DO 0 ;Assembly off

SENDMSG MAC ;Start of definition of the

;macro "SENDMSG"

LDY #0

LOOP LDA IMSG, Y ;Get a character
BEQ ouT sEnd of message
JSR cout ;Send it
INY
BNE LOOP s;Back for more

ouT <L 3End of macro definition and

sexit from routine

FIN ;Turn assembly ON
JSR HOME ;Clear screen

IMSG EQU HITMSG
>0 SENDMSG

INVRS CMP #IT
BNE NORM

IMsG EQU IMSG
>0 SENDMSG

73

MERLIN Users Manual MACROS

NORM cMP #UN"
BNE STP
IMSG EQU NMSG
>>> SENDMSG
STP CMP #rs" ;Does he want to stop?
BNE GETKEY ;No, get the next input
JMP DOS ;All done, exit gracefully
HITMSG ASC THIT sA KEY "FU,"IM,"N", OR "S"!
HEX 8D8D0O0
FMSG FLS "THIS IS A FLASHING MESSAGE"
HEX 8D8D0O0
IMSG INV "THIS IS A MESSAGE IN INVERSE"
HEX D8DOO
NMSG ASC "THIS IS A NORMAL MESSAGEY
HEX 8D8DO0

7.5. The Macro Library

A macro library with three example macro programs is included
in source file form on this diskette. The purpose of the
library is to provide some guidance to the newcomer to macros
and how they can be used within an assembly program.

NOTE: All macros are defined at the beginning of the source
file, then each example program places the macros where they
are needed, Conditionals are used to determine which example
program is to be assembled. The KBD opcode allows the user
to make this selection from the keyboard during assembly.

74

MERLIN Users Manual TECHNICAL INFORMATION

8. TECHNICAL INFORMATION

The SOURCE is placed at $9¢1 when loaded, regardless of its
original address.

The important pointers are:

START OF SOURCE in A,SB (always set $941)
HIMEM in 8C,$D (defaults to $8¢0@)
END OF SOURCE in &E,S$F

When you exit to BASIC or to the monitor, these pointers are
saved at SEJ@A-SE(JPF. They are restored upon re—entry to
MERLIN,

Entry into MERLIN replaces the current I/0 hooks with the
standard ones and reconnects DOS., This is the same as typing
PR#$ and IN#Q from the keyboard. Entry to the EDITOR discon-
nects DOS, so that you can use labels such as INIT without
disastrous consequences, Re-entry to EXEC MODE disconnects
any I/0 hooks that you may have established via the editor’s
PR# command, and reconnects DOS., Exit from assembly (com-
pletion of assembly or CTRL-C) also disconnects I/0 hooks.

8.1. General Information

Re-entry after exit to BASIC is made by the "ASSEM" command.
A BRUN MERLIN or a disk boot will also provide a warm re-
entry and will not reload MERLIN if it is already there.
This may be forced by BRUN BOOT ASM which would then be a
cold entry, "destroying" any file in memory.

Memory organization, for ordinary sized files is of no con-
cern to the user, but it is important to understand certain
constraints for the handling of large files. HIMEM (which
defaults to $8¢@@) is an upper limit to the source file. It
is also an upper limit for PUT files. If a memory error
occurs during assembly, indicating a PUT line, it means the
PUT file exceeded HIMEM and that HIMEM will have to be
increased.

75

MERLIN Users Manual TECHNICAL INFORMATION

The default ORG and OBJ addresses equal the present value of
HIMEM., It is illegal to specify an OBJ address that is less
than HIMEM except that a page 3 address is allowed. 1If a
page 3 OBJ address is used, the user MUST be careful that the
file will not write over the DOS jumps at $3D@~$3FF as the
assembler does NOT check for this error. If, during assem~
bly, the object code exceeds BASIC HIMEM (or the SYM address,
if one has been specified) then the code will not be written
to memory, but assembly will appear to proceed and its output
sent to the screen or printer. The only clue that this has
happened, if not intentional, is that the object SAVE command
is disabled in this event. Therefore, if a listing for a
very long file is desired, without actually creating code,
the user can assemble over DOS and up.

76

MERLIN Users Manual

8.2,

SFFFF

SDOCO

SD00O

SCFFF

$C000
SBFFF

APPLESOFT HIMEM: (57374) =—=B-59853
§9862

SYM g

MERLIN HIMEM: (SC.D) e $8000 L

END OF SOURCE (SE) i

BEG. OF SOURCE (SAB) = 5901

S8FF
$8A0

3800

STFF

5400
$3D0
$300
8200

100

$0

TECHNICAL INFORMATION

MERLIN
= (D Bank 2)
"NORMAL SYMBOL TABLE
1 (D Bank 1)
APPLE I/O
“SOFT SWITCHES”
-
DOS
DT Tawaten |
(Excess Symbol Table
a From Ram Card) t
FREE SPACE
OBJECT CODE
-
N —
SOURCE FILE
-
- FREE SPACE
MISC. USE
M BY MERLIN
SCREEN MEMORY
= PAGE 3
[]___DOS/MON VECTORS __
PAGE 3
1 USER SPACE
PAGE 2
- (Input Butter)
PAGE 1
2 (Stack)
PAGE 0

H (Misc. Pointers)

MERLIN Memory Map (Ram Card Version)

66535

53248

53248

53247

4N52
49161

38995

38994

32768

== ALSO CAN BE FOUND WITH “W0"
COMMAND FROM EDIT MODE

2305
2303
2228
2048
2047
1024

976
768

510

256

oo (S60.6F UNUSED)
0

77

MERLIN Users Manual

8.3.

SBFFF

$9000

S73F8

APPLESOFT HIMEM: (§73.74) == S6F53

$6000

MERLIN HIMEM: (SC.D) == 35000

END OF SOURCE (SE.F) =i

BEG. OF SOURCE ($SA.B) ==~ 5901

S8FF
$S8A0

$800

S7FF

$400
$300
$300
$200

$100

$0

78

MERLIN Memory Map (48k Version)

TECHNICAL INFORMATION

49151
DOS
1 40192
MERLIN
29688
DOS BUFFERS
2
Ll 28499
SYMBOL TABLE
1 ‘t 24576
OBJECT CODE T
1 20480
~~~~~~~~~~~ = ALSO CAN BE FOUND WITH "W0"
COMMAND FROM EDIT MODE
SOURCE FILE
B 2305
2303
FREE SPACE
2228
MISC. USE
— BY MERLIN 2048
2047
SCREEN MEMORY
1 1024
PAGE 3
[ _DOS/MON VECTORS __ | ¢76
PAGE 3
Ml USER SPACE 768
PAGE 2
(Input Buffer)
m 510
PAGE 1
Stack
M ¢ ) 256
PAGE 0
L (Misc. Pointers) == (S60.6F UNUSED)
0




MERLIN Users Manual TECHNICAL INFORMATION

8.4. Symbol Table

The symbol table is printed after assembly unless LST OFF has
been invoked. It comes first in alphabetical order and then
in numerical order. The symbol table is flagged as follows:

MD =  Macro Definition

M = Label defined in a macro (LOOP and OUT in the
example)

V = Variable (symbols starting with ])

? = A symbol that was never referenced

Internally, these are flagged by setting bits 7 to 4 of the
symbols length byte:

?=bit 7 MD=bit 5 M=bit 4

Also, bit 6 is set during the alphabetical printout to flag
printed symbols, then removed during the numerical order
printout. The symbol printout is formatted for an 8¢ colunn
printer, or for one which will send a carriage return after
49 columns.

8.5, Using MERLIN With Shift Key Mods

MERLIN supports all hardware shift key modifications. The
CONFIGURATION program will establish the modification that
you want supported. MERLIN is smart enough to know if the
modification actually exists in the Apple you are using and
defeats the modification if it is not there. Thus it can be
used on another machine without reconfiguration.

79



MERLIN Users Manual TECHNICAL INFORMATION

8.6. Using MERLIN With 80 Column Boards

Most, but not all, 8¢ column boards are supported. You may
use the VIDEO command to enable the 8f column board. To have
the board selected upon boot, use the CONFIGURATION program.
Then the VIDEO @ or $1¢ command followed by RESET will switch
back to the normal Apple screen.

If your board does not support inverse, control characters in
the source will show as ordinary capital letters instead of
inverse letters as with boards that support inverse. You can
use the editor’s FIND command to search for particular con-
trol characters, verify their presence or absence, or simply
switch over to the normal Apple screen.

1f your copy of MERLIN has been configured to support an 8¢
column card in slot 3, and there is no card in that slot,
MERLIN will recognize this and defeat the 8¢ column pro-
vision. There is no need to reconfigure for use on another
computer.,

MERLIN will NOT support any board that does not recognize the
"POKE 36" method of tabbing. As far as we know this only
means it will not support older versions of the FULL VIEW 80
card.

When in EDIT mode, MERLIN takes total control of input and
output. The effect of typing a control character will be as
described in this manual and NOT as described in the manual
for your 8§ column card. For ezample, CIRL-L will not blank
the screen, but is the case toggle. CTRL-A, which acts as a
case toggle on many 8§ column cards, will not do this in EDIT
mode and simply produces a CIRL~A in the file line.

80



MERLIN Users Manual TECHNICAL INFORMATION

8.7. The Configure ASM Program

This program allows you to make several minor modifications
to MERLIN’s default conditions. It allows you to change the
"UPDATE SOURCE" character searched for at the entry to the
assembler, the editor’s wild card character, and the number
of symbol fields printed per line in the symbol table print-
out. It also allows you to specify whether you want to have
an 8¢ column board supported, and if so, which slot it is in,

You can also specify a hardware shift key modification. Any
such modification can be supported. However, if your modifi-
cation is the type that enables direct input of lower case
(as with the VIDEX Keyboard Enmhancer) instead of providing a
memory location to be tested (as with the "game button 2"
modification), then the default at the start of each line
will be lower case rather than upper case and CTRL-L will
function as a case lock toggle.

It allows you to specify whether you have a lower case
adaptor. This will affect the condition on boot if you have
not elected to have an 8¢ column board selected. It may
always be defeated from the editor using the VIDEQ command,
so this only selects the initial condition.

You may select a number of other options including certain
printer options for use by the PRTR command.

Finally, you can save the configured version to another, or
the same disk. There is no reason to keep the original
version since you can always return to it by reconfiguration.

At the end of the configuration program the user is given the
opportunity to transfer the boot program "MERLIN" to another
disk. This is just a convenient way of transferring that
program since it cannot be done manually. You can also use
FID to copy MERLIN or ASM.OBJ (the main program.)

81



MERLIN Users Manual TECHNICAL INFORMATION

NOTE: MERLIN will RUN only on the original disk or a pro-
tected copy. The files may be kept for safety on another
disk, but cannot function until recopied onto a protected
disk. The configuration program should be BRUN only when the
standard Apple screen is in use.

8.8, Error Messages

8.8.1., BAD OPCODE

Occurs when the opcode is not valid (perhaps misspelled)
or the opcode is in the label column.

8.8.2. BAD ADDRESS MODE

The addressing mode is not a valid 65@2 instruction; for
example, JSR (LABEL) or LDX (LABEL),Y.

8.8.3. BAD BRANCH

A branch (BEQ, BCC, etc) to an address that is out of
range, i.e. further away than +127 bytes.

NOTE: Most errors will throw off the assembler’s
address calculations., Bad branch errors should be
ignored until previous errors have been dealt with.

8.8.4. BAD OPERAND

An illegally formatted operand. This also occurs if you
"EQU" a label to a zero page number after the label has

been used. It may also mean that your operand is longer
than 64 characters, or that a comment line exceeds 64
characters. This error will abort assembly.

82



MERLIN Users Manual TECHNICAL INFORMATION

8.8.5. DUPLICATE SYMBOL
On the first pass, the assembler finds two identical
labels.

8.8.6. MEMORY FULL
This is wusually caused by one of four conditions;
Incorrect OBJ setting, source code too large, object
code too large or symbol table too large. See "Special
Note" at the end of this section.

8.8.7. UNKNOWN LABEL
Your program refers to a LABEL that does not exist.
This also occurs if you try to reference a MACRO defini-
tion by anything other than PMC., It can also occur if
the referenced label is in an area with conditional
assembly OFF. The latter will not happen with a MACRO
definition.

8.8.8. NOT MACRO

Forward reference to a MACRO, or reference by PMC to a
label that is not a MACRO.

8.8.9. NESTING ERROR

Macros nested more than 15 deep or conditionals nested
more than 8 deep.

8.8.10. BAD "PUT"

This is caused by a PUT inside a macro or by a PUT
inside another PUT file.

83



MERLIN Users Manual TECHNICAL INFORMATION

8.8.11. BAD "SAvV"

This is caused by a SAV inside a macro or a SAV after a
multiple OBJ after the last SAV.

8.8.12. BAD INPUT

This results from either no input ([RTN] alone) or an
input exceeding 37 characters in answer to the KBD op-
code’s request for the value of a label.

8.8.13. BREAK

This message is caused by the ERR opcode when the ex~
pression in the operand is found to be nonzero.

8.8.14. BAD LABEL

This is caused by an unlabeled EQU or MAC, a label that
is too long or one containing illegal characters.

8.9, Special Note - Memory Full Errors

There are four common causes for the "memory full" error
message. A more detailed description of this problem and
some ways to overcome it follow,

ERROR MESSAGE: "MEMORY FULL IN LINE: n". Generated during
pass 1 prior to assembly (line number points to an OBJ in-
struction), CAUSE: An OBJ was specified that was below
MERLIN’s HIMEM (normally $8¢¢@¥) and also not within Page 3
($30¢.3FF). MERLIN will not allow you to put object code in
this range in order to protect your source file and the
system, REMEDY: Remove the OBJ instruction or change it to
specify an address within the legal range.

84



LR

MERLIN Users Manual TECHNICAL INFORMATION

ERROR MESSAGE: "ERR: MEMORY FULL'". Generated immediately
after you type in ome line too many. CAUSE: The source code
is too large and has exceeded MERLIN’s HIMEM (normally $8909
on the RAM card version; $500% on the 48K version), REMEDY:
Raise MERLIN’s HIMEM (see the section on the HIMEM command)
or break the source file up into smaller sections and bring
them in when necessary by using the "PUT" pseudo-op.

ERROR MESSAGE: "MEMORY FULL IN LINE: n". Generated during
assembly. CAUSE: Too many symbols have been placed into the
symbol table, causing it to exceed Applesoft’s HIMEM (nor-
mally $9853 for the RAM card version and $6F53 for the 48K
version). REMEDY: Make the symbol table larger by using the
SYM command to lower its beginning address.

ERROR MESSAGE: None, but no object code will be generated
(there will be no Object information displayed on the EXEC
menu). CAUSE: Object code generated from an assembly would
have exceeded the symbol table or Applesoft’s HIMEM. REMEDY:
Lower MERLIN’s HIMEM or write the object code directly to
disk, using the DSK pseudo-op.

85



MERLIN Users Manual SOURCEROR

9. SOURCEROR

9.1. Introduction

SOURCEROR is a sophisticated and easy to use disassembler
designed as a subsidiary to create MERLIN source files out of
binary programs, usually in a matter of minutes. SOURCEROR
disassembles SWEET 16 code as well as 65§2 code.

The main part of SOURCEROR is called SRCRR.O0BJ, but this
cannot be run (conveniently) directly, since it may overwrite
DOS buffers and crash the system. For this reason, a small
program named SOURCEROR is provided. It runs in the input
buffer, and does not conflict with any program in memory.
This small program simply checks memory size, gets rid of any
program such as PLE which would conflict with the main
SOURCEROR program, sets MAXFILES 1, then runs SRCRR.OBJ (at
$8803-$9AA5).

To minimize the possibility of accident, SRCRR.0BJ has a
default location of $4¢¢¢ and if you BRUN it, it will just
return without doing anything. If you try to BRUN it at its
designed location of $88@@, however, you could be in for big
trouble. SOURCEROR assumes the standard Apple screen is
being used and will oot function with an 8@ column card.

9.2. Using SOURCEROR

1. Load in the program to be disassembled. Although
Sourceror will handle programs at any location, the
original location for the program is preferable as long
as it will not conflict with SOURCEROR and the build up
of the source file. When in doubt, load it in at $809 or
$8¢3, Small programs at $40@¢ and above, or medium
sized ones above $6@¢¢ will probably be okay at their
original locations.

2. BRUN SOURCEROR

87



MERLIN Users Manual SOURCEROR

88

You will be told that the default address for the source
file is $25¢0¢. This was selected because it does not
conflict with the addresses of most binary programs you
may wish to disassemble. Just hit RETURN to accept this
default address. Otherwise, specify (in Hex) the ad-
dress you want,.

You may also access a "secret" provision at this point.
This is done by typing CIRL~S (for "SWEET") after, or in
lieu of the source address. Then you will be asked to
specify a (nonstandard) address for the SWEET 16 inter-
preter., This is intended to facilitate disassembly of
programs which use a RAM version of SWEET 16,

Next, you will be asked to hit RETURN if the program to
be disassembled is at its original (running) location,
or you must specify in Hex, the present location of the
code to be disassembled. Finally, vou will be asked to
give the ORIGINAL location of that program.

When disassembling, you must use the ORIGINAL address of
the program, not the address where the program currently
resides, It will appear that you are disassembling the
program at its original location, but actually,
SOURCEROR is disassembling the code at its present loca-
tion and translating the addresses.

Lastly, the title page which contains a synopsis of the
commands to be used in disassembly will display. You
may now start disassembling or using any of the other
commands. Your first command must include a Hex ad-
dress. Thereafter this 1is optional, as we shall
explain.

At this point, and until the final processing, vou may
hit RESET to return to the start of the SOURCEROR pro-
gram. If you hit RESET once more, vyou will exit
SOURCEROR and return to BASIC., Using RESET assumes you
are using the Autostart monitor rom.



MERLIN Users Manual SOURCEROR

9,3. Commands Used in Disassembly

The disassembly commands are very similar to those used by
the disassembler in the Apple monitor. All commands accept a
4~digit hex address before the command letter. If this
number is omitted, then the disassembly continues from its
present address. A number must be specified only upon
initial entry.

1f you specify a number greater than the present address, a
new ORG will be created.

More commonly, you will specify an address less than the
present default value. In this case, the disassembler checks
to see if this address equals the address of one of the
previous lines. If so, it simply backs up to that point. If
not, then it backs up to the next used address and creates a
new ORG. Subsequent source lines are "erased”. It is gen-
erally best to avoid new ORGs when possible. If you get a
new ORG and don’t want it, try backing up a bit more until
you no longer get a new ORG upon disassembly.

9.4, Command Descriptions

9.4.,1. L (List)

This is the main disassembly command. It disassembles 20
lines of code. 1t may be repeated (e.g. 200¢LLL will
disassemble 60 lines of code starting at $28¢¢). If a
JSR to the SWEET 16 interpreter is found, disassembly is
automatically switched to the SWEET 16 mode.

Command L always continues the present mode of disassem-
bly (SWEET 16 or normal).

89



MERLIN Users Manual SOURCEROR

If an illegal opcode is encountered, the bell will sound
and opcode will be printed as three question marks in
flashing format. This is only to call vour attention to
the situation. In the source code itself, unrecognized
opcodes are converted to HEX data, but not displayed on
the screen.

9.4.2. S (SWEET)

This is similar to L, but forces the disassembly to start
in SWEET 16 mode. SWEET 16 mode returns to normal 65§2
mode whenever the SWEET 16 RTN opcode is found.

9.4.3, N (Normal)

This is the same as L, but forces disassembly to start in
normal 652 mode.

9.4.4, H (Hex)

This creates the HEX data opcode. It defaults to one
byte of data. If you insert a one byte {(one or two
digits) hex number after the H, that number of data bytes
will be generated.

9.4,5. T (Text)

This attempts to disassemble the data at the current
address as an ASCII string. Depending on the form of the
data, this will (automatically) be disassembled under the
pseudo opcode ASC, DCI, INV or FLS. The appropriate
delimiter " or ' is automatically chosen. The disassem—
bly will end when the data encountered is inappropriate,
when 62 characters have been treated, or when the high
bit of the data changes. In the last condition, the ASC
opcode is automatically changed to DCI.

90



MERLIN Users Manual SOURCEROR

Sometimes the change to DCI is inappropriate. This
change can be defeated by using TT instead of T in the
command .

Occasionally, the disassembled string may not stop at the
appropriate place because the following code looks like
ASCII data to SOURCEROR. In this event, you may limit
the number of characters put into the string by inserting
a one or two digit hex number after the T command.

This or TT, may also have to be used to establish the
correct boundary between a regular ASCII string and a
flashing one. It is usually obvious where this should be
done.

Any lower case letters appearing in the text string are
shown as flashing uppercase letters.

9.4.,6. W (Word)

This disassembles the next two bytes at the current
location as a DA opcode. Optionally, if the command WW
is used, these bytes are disassembled as a DDB opcode.
Finally, if W- is used as the command, the two bytes are
disassembled in the form DA LABEL~l. The latter is often
the appropriate form when the program uses the address by
pushing it on the stack. You may detect this while
disassembling, or after the program has been dis-
assembled. In the latter case, it may be to your advan-
tage to do the disassembly again with some notes in hand.

91



MERLIN Users Manual SOURCEROR

9.5. Housekeeping Commands

9.5.1. / (Cancel)

This essentially cancels the last command. More exactly,
it re-establishes the last default address (the address
used for a command not necessarily attached to an
address). This is a useful convenience which allows you
to ignore the typing of an address when a backup is
desired. As an example, suppose you type T to dis~
assemble some text. You may not know what to expect
following the text, so you can just type to L to look at
it. Then if the text turns out to be followed by some
Hex data (such as $8D for a carriage return), simply type
/ to cancel the L and type the appropriate H command.

9.5.2., R (Read)

This allows you to look at memory in a format that makes
imbedded text stand out. To look at the data from $1234
to $1333 type 1234R. After that, R alone will bring up
the next page of memory. The numbers you use for this
command are totally independent of the disassembly
address.

However, you may disassemble, then use (address)R, then L
alone, and the disassembly will proceed just as if you
never used R at all. If you don‘t intend to use the
default address when you return to disassembly, it may be
wise to make a note on where you wanted to resume, or to
use the / before the R.

92



MERLIN Users Manual SOURCEROR

9.5.3. Q (Quit)

This ends disassembly and goes to the final processing
which is automatic. If you type an address before the Q,
the address pointer is backed to (but not including) that
point before the processing. If, at the end of the
disassembly, the disassembled lines include:

2341~ 4C @3 ED JMP  SEQ@3
2344~ A9 BE 94 LDA  $94BE,Y

and the last line is just garbage, type 2344Q, This will
cancel the last line, but retain the first.

9.6. Final Processing

After the Q command, the program does some last minute pro-
cessing of the assembled code. If you hit RESET at this
time, you will return to BASIC and lose the disassembled
code.

The processing may take from a second or two for a short
program, to two or three minutes for a long one. Be patient.

When the processing is done, you are asked if you want to
save the source., If so, you will be asked for a file name.
SOURCEROR will append the suffix ".5" to this name and save
it to disk.

The drive used will be the one used to BRUN SOURCEROR. Re~-
place the disk first if you want the source to go on another
disk.

To look at the disassembled source, BRUN MERLIN, or type
ASSEM, and load it in.

93



MERLIN Users Manual SOURCEROR

9.7. Dealing with the Finished Source

In most cases, after you have some experience and assuming
you used reasonable care, the source will have few, if any,
defects.

You may notice that some DA’s would have been more appro-
priate in the DA LABEL-l or the DDB LABEL formats. In this,
and similar cases, it may be best to do the disassembly again
with some notes in hand. The disassembly is so quick and
painless, that it is often much easier than trying to alter
the source appropriately.

The source will have all the exterior or otherwise un-
recognized labels at the end in a table of equates. You
should look at this table closely. It should not contain any
zero page equates except ones resulting from DA’s, JMP's or
JSR’s, This is almost a sure sign of an error in the disas-
sembly (yours, not SOURCEROR’s)., It may have resulted from
an attempt to disassemble a data area as regular code.

NOTE: 1If you try to assemble the source under these con-
ditions, you will get an error as soon as the equates appear.
If, as eventually you should, you move the equates to the
start of the program, you will not get an error, but the
assembly MAY NOT BE CORRECT. It is important to deal with
this situation first as trouble could occur if, for example,
the disassembler finds the data AD $#% 8D, It will disassem=—
ble it correctly, as LDA $@@8D.

The assembler always assembles this code as a zero page
instruction, giving the two bytes A5 8D. Occasionally you
will find a program that uses this form for a zero page
instruction, In that case, you will have to insert a char-
acter after the LDA opcode to have it assemble identically to
its original form. Often it was data in the first place
rather than code, and must be dealt with to get a correct
assembly.

94



MERLIN Users Manual SOURCEROR

9.8, The Memory Full Message

When the source file reaches within $6¢¢ of the start of
SOURCEROR (that is, when it goes beyond $82¢¢) you will see
"MEMORY FULL" and "HIT A KEY" in flashing format. When you
hit a key, SOURCEROR will go directly to the final pro-
cessing. The reason for the $68@ gap is that SOURCEROR needs
a certain amount of space for this processing. It is pos—
sible (but not likely) that part of SOURCEROR will be over-
written during final processing, but this should not cause
problems since the front end of SOURCEROR will not be used
again by that point. There 1is a "secret" override provision
at the memory full point., If the key you hit is CTRL-0 (for
override), then SOURCEROR will return for another command.
You can use this to specify the desired ending point. You
can also use it to go a little further than SOURCEROR wants
you to, and disassemble a few more lines. Obviously, you
should not carry this to extremes.

CAUTION: After exiting SOURCEROR, do not try to run it again
with a CALL. Instead, run it again from disk. This is
because the DOS buffers have been re-established upon exit,
and will have partially destroyed SOURCEROR.

9.9. The LABELER program

One of the nicest features of the SOURCEROR program is the
automatic assignment of labels to all recognizable addresses
in the binary file being disassembled. Addresses are recog-
nized by being found in a table which SOURCEROR references
during the disassembly process. For example, all JSR $FC58
instructions within a binary file will be listed by SOURCEROR
as JSR HOME. This table of address labels may be edited by
using the program LABELER.

To use labeler, BRUN LABELER. The program will then mention
that SRCRR.OBJ is being loaded into memory, and present the
main program menu.

95



MERLIN Users Manual SOURCEROR

9,10, Labeler Commands

9.10.1. Q:QUIT

When finished with any modifications you wish to make to the
label table, press Q" to exit the LABELER program. If you
wish to save the new file, press ‘S8’. Othevrwise, press
ESCAPE to exit without saving the table, for instance, if vou
had only been reviewing the table.

9.10,2. L:LIST

This allows you to list the current label table. After L7,
press any key to start the listing. Pressing any key will go
to the next page; CTRL-C will abort the listing.

9.10.3. D:DELETE LABEL(S)

Use this option to delete any address labels you do not want
in the list. After entering the D command, simply enter the
NUMBER of the label you want to delete. If you want to
delete a range, enter the beginning and ending label numbers,
separated by a comma.

9.10.4, A:ADD LABEL

Use this option to add a new label to the list. Simply tell
the program the hex address and the name you wish to
associate with that address. Press RETURN only, to abort
this option at any point.

9.10.5. F:FREE SPACE

This tells you how much free space remains in the table for
new label entries.

96



MERLIN Users Manual SOURCEROR

9.10.6. U:UNLOCK SRCRR.OBJ
Before saving a new label table, vou will need to UNLOCK the

SRCRR.OBJ file. Use this command before (Quitting the
LABELER program, if vou intend to save a new file.

97



MERLIN Users Manual SWEET 16

10. SWEET 16 - INTRODUCTION

by Dick Sedgewick

SWEET 16 is probably the least used and least understood seed
in the Apple 1{.

In exactly the same sense that Integer and Applesoft Basics
are languages, SWEET 16 is a language. Compared to the
Basics, however, it would be classed as low level with a
strong likeness to conventional 652 Assembly language.

To use SWEET 16, you must learn the language — and to quote
"§0z", "The opcode list is short and uncomplicated". "WOZ"
(Steve Wozniak), of course is Mr. Apple, and the creator of
SWEET 16.

SWEET 16 is ROM based in every Apple ][ from $F689 to $F7FC.
It has its own set of opcodes and instruction sets, and uses
the SAVE and RESTORE routines from the Apple Monitor to
preserve the 6502 registers when in use, allowing SWEET 16 to
be used as a subroutine.

It uses the first 32 locations on zero page to set up its 16
double byte registers, and is therefore not compatible with
Applesoft Basic without some additional efforts,

The original article, "SWEET 16: The 6502 Dream Machine",
first appeared in Byte Magazine, November 1977 and later in
the original "W0Z PAK". The article is included here and
again as test material to help understand the use and imple-
mentation of SWEET 16.

Examples of the use of SWEET 16 are found in the Programmer’s
Aid #1, in the Renumber, Append, and Relocate programs. The
Programmers Aid Operating Manual contains complete source
assembly listings, indexed on page 65.

99



MERLIN Users Manual SWEET 16

The demonstration program is written to be introductory and
simple, consisting of three parts:

1. Integer Basic Program
2. Machine Language Subroutine
3. SWEET 16 Subroutine

The task of the program will be to move data. Parameters of
the move will be entered in the Integer Basic Program.

The "CALL 768" ($3¢@) at line 12¢, enters a 65¢2 machine
language subroutine having the single purpose of entering
SWEET 16 and subsequently returning to BASIC (addresses $300,
$301, %382, and $312 respectively). The SWEET 16 subroutine
of course performs the move, and is entered at Hex locations
$303 to $311 (see listing Number 3).

After the move, the screen will display three lines of data,
each 8 bytes long, and await entry of a new set of para-
meters.. The three lines of data displayed on the screen are
as follows:

Line 1: The first 8 bytes of data starting a $8(¢, which
is the fixed source data to be moved (in this
case, the string A$).

Line 23 The first 8 bytes of data starting at the hex
address entered as the destination of the
move (high order byte only).

Line 3: The first 8 bytes of data starting at $P@@@ (the
first four SWEET 16 registers).

The display of 8 bytes of data was chosen to simplify the
illustration of what goes on.

Integer Basic has its own way of recording the string AS.
Because the name chosen for the string "AS$" is stored in 2
bytes, a total of five housekeeping bytes precede the data
entered as A$, leaving only three additional bytes available
for display. Integer Basic also adds a housekeeping byte at
the end of a string, known as the "string terminator".

100



MERLIN Users Manual SWEET 16

Consequently, for convenience purposes of the display, and to
see the string terminator as the 8th byte, the string data
entered via the keyboard should be limited to two characters,
and will appear as the 6th and 7th bytes. Additionally,
parameters to be entered include the number of bytes to be
moved. A useful range for this demonstration would be 1-8
inclusive, but of course 1-255 will work.

Finally, the starting address of the destination of the move
must be entered. Again, for simplicity, only the high-order
byte is entered, and the program allows a choice between
Decimal 9 and high—order byte of program pointer 1, to avoid
unnecessary problems (in this demonstration enter a decimal
number between 9 and 144 for a 48K APPLE).

The 8 bytes of data displayed starting at $0¢ will enable one
to observe the condition of the SWEET 16 registers after a
move has been accomplished, and thereby understand how the
SWEET 16 program works.

From the article "SWEET 16: The 6502 Dream Machine', remember
that SWEET 16 can establish 16 double byte registers starting
at $¢¢. This means that SWEET 16 can use the first 32
addresses on zerc page.

The "events" occurring in this demonstration program can be
studied in the first four SWEET 16 registers. Therefore, the
8 byte display starting at $§¢0¢ is large enough for this
purpose.

These four registers are established as R, Rl, R2, R3:

RO Sy lolidy] & pog1 -SWEET 16 accumulator

R1 50002 & P03 ~Source address

RZ $OP33 & 004 -Destination address

R3 P04 & 2005 ~Number of bytes to move
R14 $@@1C & $e1D ~Prior result register
R15 SPPLE & GOLF ~SWEET 16 Program counter

101



MERLIN Users Manual SWEET 16

Additionally, an examination of registers R14 and R15 will
extend an understanding of SWEET 16, as fully explained in
the "WOZ" text. Notice that the high order byte of R14,
(located at $1D) contains $¢6, and is the doubled register
specification (3X2=$#6). R15, the SWEET 16 program counter
contains the address of the next operation as it did for each
step during execution of the program, which was $¢312 when
execution ended and the 6502 machine code resumed.

To try a sample run, enter the Integer Basic program as shown
in Listing #1. Of course, REM statements can be omitted, and
line 1§ is only helpful if the machine code is to be stored
on disk. Listing #2 must also be entered starting at $30@.

NOTE: A 6502 disassembly does not look like Listing #3, but
the included SOURCEROR disassembler would create a correct
disassembly.

Enter "RUN" and hit RETURN

Enter "12" and hit RETURN (AS$ - AS string data)

Enter "18" and hit RETURN (high~order byte of
destination)

The display should appear as follows:

$P8P@P-Cl 40 @@ 19 @8 Bl B2 1E (SOURCE)
SPAPP-CL 40 @@ 19 P8 Bl B2 1E (Dest.)
$P00-1E 99 08 ¢8 98 PA 9P PP (SWEET 16)

NOTE: The 8 bytes stored at $PAQPY are identical to the 8
bytes starting at $¢8¢¢, indicating an accurate move of 8
bytes length has been made. They are moved one byte at a
time starting with token Cl and ending with token 1E. If
moving less that 8 bytes, the data following the moved data
would be whatever existed at those locations before the move.

102



MERLIN Users Manual SWEET 16

The bytes have the following significance:

A Token$
(31 46 00 19 08 Bl B2 1E
3 | i | | String
VN DSP NVA DATA  DATA Terminator
The SWEET 16 registers are shown:
Low  high low  high low high low high
$0000 1E g9 98 ?8 28 PA o9 o9
l t % i
register register register register
R@ R1 R2 R3
(acc) (source) (dest) (#bytes)

The low order byte of R, the SWEET 16 accumulator, has $1E
in it, the last byte moved (the 8th).

The low order byte of the source register Rl started as $¢0¢
and was incremented eight times, once for each byte of moved
data.

The high order byte of the destination register RZ contains
$@A, which was entered as 10 (the variable) and poked into
the SWEET 16 code. The low-order byte of RZ was incremented
exactly like RI.

Finally, register R3, the register that stores the number of
bytes to be moved, has been poked to 8 (the variable B) and
decremented eight times as each byte got moved, ending up

$OPPP .

By entering character strings and varying the number of bytes
to be moved, the SWEET 16 registers can be observed and the
contents predicted.

103



MERLIN Users Manual SWEET 16

Working with this demonstration program, and study of the
text material will enable you to write SWEET 16 programs that
perform additional 16 bit manipulations., The unassigned
opcodes mentioned in the "WOZ Dream Machine" article should
present a most interesting opportunity to "play'.

SWEET 16 as a language — or tool - opens a new direction to
Apple ][ owners without spending a dime, and it’s been there
all the time.

"Apple-ites" who desire to learn machine language program-
ming, can use SWEET 16 as a starting point. With this text
material to use, and less opcodes to learn, a user can
quickly be effective,

For those without Integer Basic, SWEET 16 is supplied as a
source file on this diskette.

10.1. Listing #1

>List
19 PRINT "[DIBLOAD SWEET": REM CTRL D
20 CALL -~ 936: DIM A § (10)
3¢ INPUT “ENTER STRING A $ " , A §
44 INPUT "ENTER # BYTES " , B
50 IF NOT B THEN 4@ : REM AT LEAST 1
60 POKE 778 B : REM POKE LENGTH
79 INPUT "ENTER DESTINATION" , A
8¢ IF A > PEEK (2§3) - 1 THEN 79
9¢ IF A < PEEK (205) + 1 THEN 7¢
109 POKE 776 , A : REM POKE DESTINATION
110 M =8 : GOSUB 16§ :+ REM DISPLAY
12¢ CALL 768 : REM GOTO 3$¢3p¢
13¢ M= A : GOSUB 160 : REM DISPLAY
140 M =0 : GOSUB 16 : REM DISPLAY
159 PRINT : PRINT : GOTO 3¢
160 POKE 60 , # : POKE 61 , M
179 CALL -6@5 : RETURN : REM XAM8 1IN MONITOR

104



MERLIN Users Manual

10.2. Listing #2

300:2¢ 89 F6 11
F3 @7 FB 09

10.3. Listing #3

SWEET 16
$300
$3¢3
$306

$3¢9

Data will

20 89
11 @9
12 99

13 09

$3pC 41
$3¢D 52
S30E  F3
S30F 97
$311 99
$312 6

be poked

HAH
HBH

60

F6
#8
Y

99

g 98

JSR
SET
SET

SET

$F689
R1

SWEET 16

12 9¢ ¢ 13 09 @@ 41 52

source address

R2 destination address

R3 1length

LD
ST
DCR
BNZ
RTN
RTS

@r1
@Rr2
R3
$30cC

from the Integer Basic program:

from Line 100
from Line 60

105



MERLIN Users Manual SWEET 16

11. SWEET 16: A Pseudo 16 Bit Microprocessor

By Steve Wozniak

11.1. Description

While writing APPLE BASIC for a 6592 microprocessor, I re-
peatedly encountered a variant of MURPHY’S LAW. Briefly
stated, any routine operating on 16-bit data will require at
least twice the code that it should. Programs making exten-
sive use of 16-bit pointers (such as compilers, editors, and
assemblers) are included in this category. In my case, even
the addition of a few double-byte instructions to the 65¢2
would have only slightly alleviated the problem. What I
really needed was a 65¢2/RCA 180¢ hybrid - an abundance of
16-bit registers and excellent pointer capability. My solu-
tion was to implement a non-existent (meta) 16-bit processor
in software, interpreter style, which I call SWEET 16.

SWEET 16 is based on sixteen 16-bit registers (R@-15), which
are actually 32 memory locations. R{ doubles as the SWEET 16
accumulator (ACC), R15 as the program counter {(PC), and R14
as the status register. RI13 holds compare instruction re-
sults and R12 is the subroutine return stack pointer if SWEET
16 subroutines are used. All other SWEET 16 registers are at
the user’s unrestricted disposal.

SWEET 16 instructions fall into register and non-register
categories. The register ops specify one of the sixteen
registers to be used as either a data element or a pointer to
data element or a pointer to data in memory, depending on the
gspecific instruction. For example INR R5 uses R5 as data and
ST @R7 uses R7 as a pointer to data in memory. Except for
the SET instruction, register ops take one byte of code each.
The non-register ops are primarily 6582 style branches with
the second byte specifying a +/-127 byte displacement rela-
tive to the address of the following instruction. Providing
that the prior register op result meets a specified branch
condition, the displacement is added to the SWEET 16 PC,
effecting a branch.

107



MERLIN Users Manual SWEET 16

SWEET 16 is intended as a 65¢2 enhancement package, not a
stand-alone processor. A 6502 program switches to SWEET 16
mode with a subroutine call and subsequent code is inter~
preted as SWEET 16 instructions. The nonregister op RIN
returns the user program to 6502 mode after restoring the
internal register contents (A, S, Y, P, and S). The fol~-
lowing example illustrates how to use SWEET l6.

309 B9 09 92 LDA  IN,Y get a char.

3¢3 C9 CD CMP #rM "M" for move

3¢5 DO $9 BNE  NOMOVE  No. skip move

307 20 89 F6 JSR SW16 Yes, call SWEET 16
3¢A 41 MLOOP LD @r1 Rl holds source

39 52 ST @r2 R2 holds dest. addr.
3pCc F3 DCR  R3 Decr. length

39D @7 FB BNZ  MLOOP Loop until done

3¢0F 99 RTN Return to 6592 mode.
319 €9 C5 NOMOVE CMP #"E" "E" char?

312 DY 13 BEQ  EXIT Yes, exit

314 C8 INY No, cont,

NOTE: Registers A, X, Y, P, and S are not disturbed by SWEET
16.

11.2. Instruction Descriptions

The SWEET 16 opcode listing is short and uncomplicated.
Excepting relative branch displacements, hand assembly is
trivial. All register opcodes are formed by combining two
Hex digits, one for the opcode and one to specify a register.
For example, opcodes 15 and 45 both specify register R5 while
codes 23, 27 and 29 are all ST ops. Most register ops are
assigned in complementary pairs to facilitate remembering
them, Therefore, LD and ST are opcodes 2N and 3N respec-
tively, while LD @ and ST @ are codes 4N and 5N.

108



MERLIN Users Manual SWEET 16

Opcodes @ to C (Hex) are assigned to the thirteen non-regis-—
ter ops. Except for RIN (opcode @), BK (#JA), and RS (¢B),
the non register ops are 6502 style branches. The second
byte of a branch imstruction contains a +/-127 byte displace=-
ment value (in two’s complement form) relative to the address
of the instruction immediately following the branch.

If a specified branch condition is met by the prior register
op result, the displacement is added to the PC effecting a
branch. Except for BR (Branch always) and BS (Branch to
Subroutine), the branch opcodes are assigned in complementary
pairs, rendering them easily remembered for hand coding. For
example, Branch if Plus and Branch if Minus are opcodes 4 and
5 while Branch if Zero and Branch if NonZero are opcodes 6
and 7.

11.3. Sweet 16 Opcode Summary

11.3.1. Register OPS

in SET Rn Constant (Set)

2n LD Rn (Load)

3In ST Rn (Store)

4n LD @Rn (Load Indirect)

5n ST @Rn (Store Indirect)

6n 1.DD @Rn (Load Double Indirect)
7n STD @Rn (Store Double Indirect)
8n POP @rn (Pop Indirect)

9n STP @Rn (Store POP Indirect)
An ADD Rn (Add)

Bn SUB Bn (Sub)

Cn POPD @Rn (Pop Double Indirect)
Dn CPR Rn (Compare)

En INR Rn (Increment)

Fn DCR Rn {Decrement)

109



MERLIN Users Manual

11.3.2.

11.4.

o)
gL
¢2
%3
WA
#5
96
@7
78
%9
gA
¢B
gc
)
JE
gF

11.4.1.

Non-register OPS

RTN

BR ea
BNC ea
BC ea
BP ea
BM ea
BZ ea
BNZ ea
BM1 ea
BNM1 ea
BK

RS

BS ea

Register Instructions

SET

(Return
(Branch
(Branch
(Branch
(Branch
(Branch
(Branch
(Branch
(Branch
(Branch
(Break)
(Return
(Branch

to

SWEET 16

6502 mode)

always)

if
if
if
if
if
if
if
if

No Carry)
Carry)

Plus)

Minus)

Zero)
NonZero)
Minus 1)

Not Minus 1)

from Subroutine)

to

Subroutine)

(Unassigned)
(Unassigned)
(Unassigned)

SET Rn,Constant In Low High

110

The 2-byte constant is loaded into Rn (n=0 to F, Hex)
and branch conditions set accordingly. The carry is

cl

eared.

EXAMPLE:

15 34 AP SET R5, $A@34

R5 now contains $A@34



MERLIN Users Manual SWEET 16

11.4,2. LOAD
LD Rn 2n
The ACC (R§) is loaded from Rn and branch conditions set
according to the data transferred. The carry is cleared
and contents of Rn are not disturbed.
EXAMPLE:
15 34 AQSET R5, SAQ34
25 LD R5 ACC now contains $AQ34
11.4.3., STORE
ST Rn  3n
The ACC is stored into Rn and branch conditions set

according to the data transferred. The carry is cleared
and the ACC contents are not disturbed.

EXAMPLE:
25 1D R5 Copy the contents
36 ST R6 of R5 to Ré

1l.4.4. LOAD INDIRECT
LD @Rn 4n

The low-order ACC byte is loaded from the memory loca-
tion whose address resides in Rn and the high~order ACC
byte is cleared. Branch conditions reflect the final
ACC contents which will always be positive and never
minus 1. The carry is cleared. After the transfer, Rn
is incremented by 1,

111



MERLIN Users Manual SWEET 16

EXAMPLE:

15 34 A@ SET R5, SAP34

45 LD @RS ACC is loaded from memory
location $A@34
R5 is incr to $A@35

11.4.5. STORE INDIRECT
ST @Rn  5n

The low-order ACC byte is stored into the memory loca-
tion whose address resides in Rn. Branch conditions
reflect the 2-byte ACC contents. The carry is cleared.
After the transfer Rno is incremented by 1.

EXAMPLE:

15 34 Ap SET RS>, $AP34Load pointers R5, R6 with

16 22 99 SET R6, $90225AP34 and $9922

45 LD @R5 Move byte from $AQ34 to $9¢22
56 ST @ré6 Both ptrs are incremented

11.4.6. LOAD DOUBLE-BYTE INDIRECT
LDD @Rn 6n

The low order ACC byte is loaded from memory location
whose address resides in Rn, and Rn is then incremented
by 1. The high order ACC byte is loaded from the memory
location whose address resides in the incremented Rn,
and Rn is again incremented by 1. Branch conditions
reflect the final ACC contents. The carry is cleared.

EXAMPLE:
15 34 AP SET R5, $A834 The low-order ACC byte is loaded

65 LDD @R6 from $A@34, high-order from
SAP35, R5 is incr to $A@36

112



MERLIN Users Manual SWEET 16

11.4.7. STORE DOUBLE~BYTE INDIRECT
STD @Rn 7n

The low~order ACC byte is stored into memory location
whose address resides in Rn, and Rn is then incremented
by 1. The high-order ACC byte is stored into the memory
location whose address resides in the incremented Rn,
and Rn is again incremented by 1. Branch conditions
reflect the ACC contents which are not disturbed. The
carry is cleared.

EXAMPLE:

15 34 AP SET R5, $AP34 Load pointers R5, R6
16 22 99 SET R6, $9922 with SA@34 AND $9922
65 LDD @R5 Move double byte from
76 STD @R SAP34-35 TO $9¢22-23,
Both pointers incremented by 2.

11.4.8., POP INDIRECT
POP @Rn 8&n

The low=order ACC byte is loaded from the memory loca-
tion whose address resides in Rn after Rn is decremented
by 1, and the high order ACC byte is cleared. Branch
conditions reflect the final 2-byte ACC contents which
will always be positive and never minus one. The carry
is cleared. Because Rn is decremented prior to loading
the ACC, single byte stacks may be implemented with the
ST @Rn and POP @Rn ops (Rn is the stack pointer).

113



MERLIN Users Manual SWEET 16

EXAMPLE:

15 34 A SET R5, S$AQ34 Init stack pointer
10 ¢4 ¢¢ SET R@, 4 Load 4 into ACC

55 ST @RS PUSH 4 onto stack
19 95 @9 SET RP, 5 Load 5 into ACC

55 ST @RS Push 5 onto stack
19 ¢6 @@ SET R@, 6 Load 6 into ACC

55 ST @R5 Push 6 onto stack
85 POP @RS Pop 6 off stack into ACC
85 POP @R5 Pop 5 off stack

85 POP @RS Pop 4 off stack

11.4.9, STORE POP INDIRECT
STP @Rn 9n

The low-order ACC byte is stored into the memory loca-
tion whose address resides in Rn after Rn is decremented
by l. Branch conditions will reflect the 2-byte ACC
contents which are not modified. STP @Rn and POP @Rn
are used together to move data blocks beginning at the
greatest address and working down. Additionally,
single-byte stacks may be implemented with the STP @Rn

OPS .
EXAMPLE:

14 34 AP SET R4, $A@34 Init pointers
15 22 9¢ SET RS, $9922

84 POP @R4 Move byte from
95 STP @R5 $AG33 to $9021
84 POP @R4 Move byte from
95 STP @R5 $AQ32 to $9920

114



MERLIN Users Manual SWEET 16

11.4.10. ADD

ADD Rn An

The contents of Rn are added to the contents of ACC (R)
and the low=order 16 bits of the sum restored in ACC.
The 17th sum bit becomes the carry and the other branch
conditions reflect the final ACC contents.

EXAMPLE:

1¢ 34 76 SET R@, $7634  Init R (ACC) and Rl

11 27 42 SET R1, $4227

Al ADD R1 Add Rl (sum=B85B c clear)

AP ADD R§ Double ACC (R@) to $7@B6
with carry set.

11,4.,11. SUBTRACT

SUB Rn  Bn

The contents of Rn are Subtracted from the ACC contents
by performing a two’s complement addition:

ACC = ACC + Rn + 1

The low-order 16 bits of the subtraction are restored in
the ACC, the 17th sum bit becomes the carry and other
branch conditions reflect the final ACC contents. If
the 16-bit unsigned ACC contents are greater than or
equal to the 16~bit unsigned Rn contents, then the carry
is set, otherwise it is cleared. Rn is not disturbed.

EXAMPLE:

19 34 76 SET R@, $7634 1Init RO (ACC)
11 27 42 SET Rl, $4227 and Rl

Bl SUB R1 Subtract Rl
(diff=8340D with c¢ set)
B SUB RO Clears ACC. (R@)

115



MERLIN Users Manual SWEET 16

11.4,12. POP DOUBLE-BYTE INDIRECT

POP @Rn Cn

Rn is decremented by 1l and the high-order ACC byte is
loaded from the memory location whose address now re-
sides in Rn. Rn is again decremented by 1 and the low-
order ACC byte is loaded from the corresponding memory
location. Branch conditions reflect the final ACC con-
tents.

The carry is cleared. Because Rn is decremented prior
to loading each of the ACC halves, double-byte stacks
may be implemented with the STD @Rn and POPD @Rn ops (Rn
is the stack pointer).

EXAMPLE:

15 34 A@ SET RS, $A@34 1Init stack pointer
19 12 AA  SET R@, SAAL2 Load $AAL2 into ACC.

75 STD @R5 Push $AA12 onto stack
1¢ 34 BB SET R$, $BB34 Load $BB34 into ACC.
75 STD @R5 Push $BB34 onto stack
c5 POPD @RS Pop $BB34 off stack
C5 POPD @R5 Pop $AAl12 off stacy

11.4.13. COMPARE

116

CPR Rn  Dn

The ACC (R¥) contents are compared to Rn by performing
the 16-bit binary subtraction ACC~Rn and storing the low
order 16 difference bits in R13 for subsequent branch
tests, If the 16-bit unsigned ACC contents are greater
than or equal to the 16-bit unsigned Rn contents, then
the carry is set, otherwise it is cleared. No other
registers, including ACC and Rn are disturbed.



MERLIN Users Manual SWEET 16

EXAMPLE:

15 34 AP SET R5, $A@34 Pointer to memory
16 BF AP SET R6, $APBF Limit address

BY LOOP1 SUB RO Zero data

75 STD @R5 Clear 2 locns
Increment RS by 2

25 LD RS Compare pointer R5

D6 CPR R6 to limit R6

$2 FA BNC LOOP1L Loop if ¢ clear

11.4.14, TINCREMENT

INR Rn En

The contents of Rn are incremented by 1. The carry is
cleared and other branch conditions reflect the incre-
mented value.

EXAMPLE:

15 34 AP SET R5, $AP34 (Pointer)

BO SUB R§ Zero to R

55 ST @R5 Clr Locn S$A@34
E5 INR R5 Incr RS to $A@36
55 ST @RS Clrs locn $AP36

(not $AQ35)

11.4.15, DECREMENT

DCR BRn Fn
The contents of Rn are decremented by 1. The carry is

cleared and other branch conditions reflect the decre-
mented value.

117



MERLIN Users Manual SWEET 16

EXAMPLE: (Clear 9 bytes beginning at location A@34)

15 34 A®P SET R5, $A@34 Init Pointer

14 99 @@ SET R4, 9 Init counter

BO SUB R Zero ACC

55 LOOP2 ST @R5 Clear a mem byte
F4 DCR R4 Decrement count
¢7 FC BNZ LOOP2 Loop until Zero

11.5. Non-Register Instructions

11.5.1. RETURN TO 6502 MODE
RTN @0

Control is returned to the 65¢2 and program execution
continues at the location immediately following the RIN
instruction. The 6502 registers and status conditions
are restored to their original contents (prior to en-
tering SWEET 16 mode). -

11.5.2., BRANCH ALWAYS
BR ea 01 d

An effective address (ea) is calculated by adding the
signed displacement byte (d) to the PC. The PC contains
the address of the instruction immediately following the
BR, or the address of the BR op plus 2. The displace-
ment is a signed two’s complement value from ~-128 to
+127. Branch conditions are not changed.

118



MERLIN Users Manual SWEET 16

NOTE: The effective address calculation is identical to
that for 65@2 relative branches. The Hex add & subtract
features of the APPLE ][ monitor may be used to calcu-
late displacements.

d =480 ea=PC+ 2 - 128
d = $81 ea =PC + 2 - 127
d =8FF ea=PC+ 2 -1

d =500 ea=PC+2+90

d =%l ea=PC+2+1
d=87E ea =PC+ 2+ 126
d = 87F ea = PC + 2 + 127
EXAMPLE:

$30p: @1 50 BR $352

11.5.3. BRANCH IF NO CARRY
BNC ea 02 4
A branch to the effective address is taken only if the
carry is clear, otherwise execution resumes as normal
with the next instruction. Branch conditions are not
changed.

11.5.4, BRANCH IF CARRY SET
BC ea 3 d

A branch is effected only if the carry is set. Branch
conditions are not changed.

119



MERLIN Users Manual SWEET 16

11.5.5. BRANCH IF PLUS

BP ea 04 d

A branch is effected only if the prior ‘result’ (or most
recently transferred data) was positive. Branch condi-
tions are not changed.

EXAMPLE: (Clear mem from A@34 to AQ3F)

15 34 AP SET R5, $AP34 Init pointer
14 3F AP SET R4, $A@3F Init limit

BY LOOP 3 SUB R§

55 ST @R5 Clear mem byte
;Increment RS

24 LD R4 Compare limit

D5 CPR R5 to pointer

@4 FA BP LOOP3 Loop until done

11.5.6., BRANCH IF MINUS

BM ea 5 d

A branch is effected only if prior ‘result’ was minus
(negative, MSB = 1), Branch conditions are not changed.

11.5.7. BRANCH IF ZERO

120

BZ ea 06 d

A branch is effected only if the prior ‘result’ was
zero. Branch conditions are not changed.



MERLIN Users Manual SWEET 16

11.5.8. BRANCH IF NONZERO
BNZ ea @7 d

A branch is effected only if the prior ‘result’ was non-—
zero. Branch conditions are not changed.

11.5.9. BRANCH IF MINUS ONE
BML ea 08 d
A branch is effected only if the prior ‘result’ was
minus one ($FFFF Hex). Branch conditions are not
changed.

11.5.10. BRANCH IF NOT MINUS ONE
BNM 1 ea 09 4d
A branch is effected only if the prior ‘result’ was not
minus 1. Branch conditions are not changed.

11.5.11. BREAK
BK QA
A 6502 BRK (break) instruction is executed. SWEET 16
may be re-entered non destructively at SW16d after cor-

recting the stack pointer to its value prior to ex-
ecuting the BRK.

121



MERLIN Users Manual SWEET 16

11.5.12. RETURN FROM SWEET 16 SUBROUTINE

RS 9B

RS terminates execution of a SWEET 16 subroutine and
returns to the SWEET 16 calling program which resumes
execution (in SWEET 16 mode)., R12, which is the SWEET
16 subroutine return stack pointer, is decremented
twice. Branch conditions are not changed.

11.5.13. BRANCH TO SWEET 16 SUBROUTINE

122

BS ea OC d

A branch to the effective address (PC + 2 + d) is taken
and execution is resumed in SWEET 16 mode. The current
PC is pushed onto a 'SWEET 16 subroutine return address’
stack whose pointer is R12, and R12 is incremented by 2.
The carry is cleared and branch conditions set to indi-
cate the current ACC contents.

EXAMPLE: (Calling a ‘memory move’ subroutine to move
AP34~AP3B to 300@-3007)

15 34 AP SET R5, $A#34 1Init pointer 1
14 3B AP SET R4, $A@3B Init limit 1
16 ¢¢ 3¢ SET R6, $3008 Init pointer 2

#Cc 15 BS MOVE Call move subrtn
45 MOVE LD @R5 Move one

56 ST @R6 byte

24 LD R4

D5 CPR R5 Test 1f done

@4 FA BP MOVE

()3} RS ;Return



MERLIN Users Manual SWEET 16

11.6. Theory of Operation

SWEET 16 execution mode begins with a subroutine call to
SW16. All 65¢2 registers are saved at this time, to be
restored when a SWEET 16 RTN instruction returns control to
the 65¢2, 1If you can tolerate indefinite 6502 register
contents upon exit, approximately 3¢ usec may be saved by
entering at SW16 + 3. Because this might cause an inadver-
tent switch from Hex to Decimal mode, it is advisable to
enter at SW16 the first time through.

After saving the 6502 registers, SWEET 16 initializes its PC
(R15) with the subroutine return address off the 6502 stack.
SWEET 16°s PC points to the location preceding the next
instruction to be executed, Following the subroutine call
are 1-,2~, and 3~byte SWEET 16 instructions, stored in
ascending memory locations like 6502 instructions. The main
loop at SW16B repeatedly calls the ‘execute Instruction’
routine to execute it.

Subroutine SW16C increments the PC (R15) and fetches the next
opcode, which is either a register op of the form OP REG with
OP between 1 and 15 or a non~register op of the form ¢ OP
with OP between § and 13, Assuming a register op, the regis-
ter specification is doubled to account for the 3 byte SWEET
16 registers and placed in the X-reg for indexing. Then the
instruction type is determined. Register ops place the
doubled register specification in the high order byte of R 14
indicating the ‘prior result register’ to subsequent branch
instructions. Non-register ops treat the register specifica-
tion (right-hand half-byte) as their opcode, increment the
SWEET 16 PC to point at the displacement byte of branch
instructions, load the A-reg with the ‘prior result register’
index for branch condition testing, and clear the Y-reg.

123



MERLIN Users Manual SWEET 16

11.7. When is an RTS really a JSR?

Each instruction type has a corresponding subroutine. The
subroutine entry points are stored in a table which is direc~—
tly indexed into by the opcode. By assigning all the entries
to a common page, only a single byte of address need be
stored per routine. The 652 indirect jump might have been
used as follows to transfer control to the appropriate sub-
routine.

LDA #ADRH High~order byte.
STA IND+1

LDA OPTBL,X Low-order byte.
STA IND

JMP (IND)

To save code, the subroutine entry address (minus 1) is
pushed onto the stack, high —order byte first. A 65¢2 RTS
(return from subroutine) is used to pop the address off the
stack and into the 65¢2 PC (after incrementing by 1). The
net result is that the desired subroutine is reached by
executing a subroutine return instruction!

11.8. OPcode Subroutines

The register op routines make use of the 6502 ‘zero page
indexed by X’ and ‘indexed by X indirect’ addressing modes to
access the specified registers and indirect data. The ‘re-
sult’ of most register ops is left in the specified register
and can be sensed by subsequent branch instructions, since
the register specification is saved in the high-order byte of
Rl4., This specification is changed to indicate R (ACC) for
ADD and SUB instructions and R13 for the CPR (compare) in-
struction.

Normally the high-order R14 byte holds the ‘prior result
register’ index times 2 to account for the 2-byte SWEET 16
registers and the LSB is zero. If ADD, SUB, or CPR instruc—
tions generate carries, then this index is incremented, set-
ting the LSB.

124



MERLIN Users Manual SWEET 16

The SET instruction increments the PC twice, picking up data
bytes in the specified register. In accordance with 65¢2
convention, the low-order data byte precedes the high-order
byte.

Most SWEET 16 non-register ops are relative branches. The
corresponding subroutines determine whether or not the ‘prior
result’ meets the specified branch condition and if so,
update the SWEET 16 PC by adding the displacement value (-128
to +127 bytes).

The RTN op restores the 6502 register contents, pops the
subroutine return stack and jumps indirect through the SWEET
16 PC, This transfers control to the 6582 at the instruction
immediately following the RTN instruction.

The BK op actually executes a 65@2 break instruction (BRK),
transferring control to the interrupt handler,

Any number of sub